Temperature Coefficient of Thin Film Resistance Temperature Detectors for Improved Heat Flux Sensors

Article Preview

Abstract:

The measurement of thermal properties or internal or external boundary conditions requires temperature and heat flux data. Both information can be provided by heat flux sensors. The one consisting in measuring temperature at various locations within the wall and using inverse method to estimate wall temperature and heat flux is among those providing the lowest measurement bias for transient heat flux measurement. However, this very accurate sensor requires time consuming technical work for microthermocouples implementation and due to the welding, one cannot locate precisely the temperature measurement. The idea developed in this work is to replace the wire microthermocouples by thin film resistance temperature detectors deposited on polymer substrate in order to ease the fabrication and to increase the accuracy of heat flux sensor. As the deposited sensors are RTDs, a preliminary study is performed showing the effect of the metal as well as the processing conditions on the electrical resistivity and temperature coefficient of copper and aluminum thin film

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-307

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Jacquot : Ingénierie des Matériaux et des Microgénérateurs Thermoélectriques Planaires, Institut National Polytechnique de Lorraine, phD, March 28th, France (2003).

Google Scholar

[2] F. Van der Graff, in: Heat flux sensors, edited by T. Ricol, J. Scholz , Thermal Sensors 4, Wiley, Weinheim Germany, (1990) p.297.

Google Scholar

[3] J. M. Devisme, T. Langlet,O. Douzane, J. M. Roucoult and M. Queneudec: Int. J. Therm. Sci. Vol. 40 (2001), p.205.

Google Scholar

[4] A. V. Mityakov, S. Z. Sapozhnikov, V. Y. Mityakov, A. A. Snarskii, M. I. Zhenirovsky and J. J. Pyrhonen: Sens. Actuators A 176 (2012), p.1.

DOI: 10.1016/j.sna.2011.12.020

Google Scholar

[5] M. Khaled, B. Garnier, F. Harambat and H. Peerhossaini: Meas. Sci. Technol. Vol. 21 (2010) 025903-10.

DOI: 10.1088/0957-0233/21/2/025903

Google Scholar

[6] J. P. Bardon and Y. Jarny : Procédé et dispositif de mesure en régime transitoire de température et flux surfacique, Patent n° 94. 01996 France, Feb 22th (1994).

Google Scholar

[7] J.V. Beck, B. Blackwell and C. R. St Clair Jr: Inverse Heat Conduction (Wiley, New York 1985).

Google Scholar

[8] M.A. Shannon, T.M. Leicht, P.S. Hrnjak, N.R. Miller and F.A. Khan: Sens. Actuators A 88 (2001) p.164.

Google Scholar

[9] A. Foroughi-Abari, C. Xu and K.C. Cadien: Thin Solid Films Vol. 520(6) (2011), p.1762.

Google Scholar

[10] D. Hamadi, B. Garnier, H. Willaime, F. Monti and H. Peerhossaini: Lab on a Chip 12 (2012) p.652.

DOI: 10.1039/c2lc20919e

Google Scholar

[11] B. Azerou, B. Garnier and A. Lahmar: J. Physics: Conference Series 395 (2012) 012084.

Google Scholar

[12] A. Saidi and J. Kim: Experimental Thermal and Fluid Science Vol. 28 (2004) p.903.

Google Scholar