Epidemic Spreading with Feedback Mechanism and Time Delay under Migration in Scale-Free Networks

Article Preview

Abstract:

Taking into account the heterogeneity of the underlying networks, an epidemic model with feedback-mechanism, time delay and migrations of individuals on scale-free networks is presented. First, the epidemic dynamics is analyzed via the mean field theory. The spreading critical threshold and equilibriums are derived. The existence of endemic equilibrium is determined by the spreading threshold. Then, the influences of feedback-mechanism, time delay, migrations of individuals and the heterogeneity of the scale-free networks on the spreading threshold and the epidemic steady-state are studied in detail. Numerical simulations are presented to illustrate the results with the theoretical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

655-661

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. J. Watts, S. H. Strogatz: Nature Vol. 393 (1998), pp.409-410.

Google Scholar

[2] A. Barabasi, R. Albert: Science Vol. 286 (1999), pp.509-512.

Google Scholar

[3] M. Barthelemya, A. Barratb, et al : J. Theor. Biol. Vol. 235 (2005), pp.275-288.

Google Scholar

[4] H.W. Hethcote, J.A. Yorke : Lecture Notes in Biomathematics, Vol. 56, Springer, Berlin, Germany, (1984).

Google Scholar

[5] S. Eubank, H. Guclu, et al: Nature Vol. 429 (2004), pp.180-184.

Google Scholar

[6] S. Bansal, B. Grenfell, L.A. Meyers: J.R. Soc. Interface 4 (2007), pp.879-891.

Google Scholar

[7] R. Pastor-Satorras, A. Vespingani: Phys. Rev. Lett. Vol. 63 (2001), p.066177.

Google Scholar

[8] R.M. May, A.L. Lioyd: Phys. Rev. E Vol. 64 (2001), p.066112.

Google Scholar

[9] R. Pastor-Satorras, A. Vespignani: Epidemic spreading in scale-free networks, Phys. Rev. Lett. Vol. 86 (2001), pp.3200-3203.

DOI: 10.1103/physrevlett.86.3200

Google Scholar

[10] R. Pastor-Satorras, A. Vespingani: Phys. Rev. E Vol. 65 (2002), p.035108.

Google Scholar

[11] A. Donofrio: Nonlinear Anal.: Real Word Appl. Vol. 9 (2008), pp.1567-1572.

Google Scholar

[12] L. Wang, G. Dai: SIAM J. Appl. Math. Vol. 68 (2008), pp.1495-1502.

Google Scholar

[13] Y. Moreno, R. Pastor-Satorras, A. Vespingani: Eur. Phys. J. B Vol. 26 (2002), pp.521-529.

Google Scholar

[14] M. Barthelemy, A. Barrat, et al: Phys. Rev. Lett. Vol. 92 (2004), pp.178701-178704.

Google Scholar

[15] M.E.J. Newmann: SIAM. Rev. Vol. 45 (2003), pp.167-256.

Google Scholar

[16] N. Sugimine, K. Aihara: Artific, Life Robotics Vol. 11 (2007), pp.157-161.

Google Scholar

[17] G. Zhu, X. Fu, G. Chen: Commun. Nonlinear Sci. Numer. Simul. Vol. 17 (2012), pp.2588-2594.

Google Scholar

[18] J. Lou, T. Ruggeri: J. Math. Anal. Appl. Vol. 365 (2010), pp.210-219.

Google Scholar

[19] Pastor-Satorras R, Vespignani A.: Phys. Rev. E Vol. 63 (2001), p.066117.

Google Scholar

[20] Lin G J, Jia X and Quyang Q.: J. Peking University (Health Sciences) Vol. 35 (2003), p.66.

Google Scholar

[21] G. Zhu, X. Fu, G. Chen: Appl. Math. Model. (2012), doi: 10. 1016/j. apm. 2012. 01. 023.

Google Scholar

[22] J. Liu, T. Zhang: Commun Nonlinear Sci Numer Simulat Vol. 16 (2011), pp.3375-3384.

Google Scholar

[23] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya: Acta Math. Sci. Vol. 32 (2012), pp.851-865.

Google Scholar