[1]
T.J. Shi X.M. Fang, Virtual Backbone Network Construction Algorithm Based on Connected Dominating Set,. Computer Engineering, vol. 37, no. 1, pp.116-118, (2011).
Google Scholar
[2]
D.Y. Li,D. Zh. Du,X. ZH. Cheng,X. Huang, Polynomial-time approximation scheme for minumun connected dominating set in ad hoc wireless networks. Manuscript, China, (2003).
DOI: 10.1002/net.10097
Google Scholar
[3]
K. Wang J.G. Yu, Simple construction strategy for weakly connected dominating set in wireless networks,. Computer Engineering and Applications, vol. 47, no. 20, pp.81-84 , (2011).
Google Scholar
[4]
S.G. Li, On connected k-domination numbers of graphs, Discrete Mathematics, vol. 274, pp.303-310, (2004).
DOI: 10.1016/s0012-365x(03)00203-6
Google Scholar
[5]
J.M. Xu,F. Tian, Bounds for distance domination number of graphs, Manuscript, China, (2003).
Google Scholar
[6]
F. Tian J.M. Xu, Distance irredundance and connected domination numbers of a graph, Manuscript, China, (2004).
Google Scholar
[7]
Y.S. Wang W.W. Zhuang,T. ZH. Hu, Conditionally stochastic domination of generalized order statistics from two samples,. Statistical papers, no. 6, pp.369-373, (2010).
DOI: 10.1007/s00362-008-0194-4
Google Scholar
[8]
X.F. Zhao, Heuristic Algorithm for Minimum Connected r-hop k-dominating Set, Computer Engineering, vol. 38, no. 21, pp.67-73, (2011).
Google Scholar
[9]
H.B. Hunt III S.S. Ravi D.J. Rosenkrantz M.V. Marathe,H. Breu, Simple heuristics for unit disk graphs,. Proceedings of the 4th Canadian Conference on Computational Geometry, pp.244-249, August (1992).
DOI: 10.1002/net.3230250205
Google Scholar
[10]
W. Teresa F.H. Haynes, Nordhaus-gaddum inequalities for domination in graphs., Discrete Mathematics, Vol. 155, pp.99-105, (1996).
DOI: 10.1016/0012-365x(94)00373-q
Google Scholar