Computer Simulation of the Subwavelength Design for Different Characteristic Equations

Article Preview

Abstract:

The subwavelength focusing lens usually can not focus on the preset focus. There are many factors leading to the errors, and one of the most important factors is the choosing of the dispersion relation. In this paper, different dispersion relations are studied and the applicable conditions are found for both the period characteristic equation and the MIM characteristic equation in designing the focusing lens. A focusing lens with long focal depth is designed according the applicable condition and the accuracy of the design is verified by the simulation of FDTD method. It is believed that this study will provide useful information for further designing of the subwavelength lens.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1226-1230

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669 (1998).

DOI: 10.1038/35570

Google Scholar

[2] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, Surface plasmon enhance optical transmission through subwavelength holes, Phys. Rev. B 58, 6779-6782 (1998).

DOI: 10.1103/physrevb.58.6779

Google Scholar

[3] Z. J Sun, H.K. Kim, Refractive transmission of light and beam shaping with metallic nano-optic lenses, Appl. Phys. Lett. 85, 642-644(2004).

DOI: 10.1063/1.1776327

Google Scholar

[4] H. F Shi, C. T Wang, C. L Du, X. G Luo, X. C Dong, H. T Gao, Beam manipulating by metallic nano-slits with variant widths, Opt. Express 13, 6815-6820 (2005).

DOI: 10.1364/opex.13.006815

Google Scholar

[5] T. Xu, C. L Du, C. T Wang, X. G Luo, Subwavelength imaging by metallic slab lens with nanoslits, Appl. Phys. Lett. 91, 201501(1-3) (2007).

DOI: 10.1063/1.2811711

Google Scholar

[6] T. Xu, C. T Wang, C. L Du, X. G Luo, Plasmonic beam deflector, Opt. Express 16, 4753-4859 (2008).

DOI: 10.1364/oe.16.004753

Google Scholar

[7] N. Davidson, A. A. Friesem, E. Hasman, Holographic axilens: high resolution and long focal depth, Opt. Lett. 16, 523-525 (1991).

DOI: 10.1364/ol.16.000523

Google Scholar

[8] B. Z. Dong, G. Z. Yang, B. Y. Gu, and O. K. Ersoy, Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution, J. Opt. Soc. Am. A 13, 97–103 (1996).

DOI: 10.1364/josaa.13.000097

Google Scholar

[9] B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution, J. Opt. Soc. Am. A 18, 1465–1470 (2001).

DOI: 10.1364/josaa.18.001465

Google Scholar

[10] J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,J. Opt. Soc. Am. A 19, 2030–2035 (2002).

DOI: 10.1364/josaa.19.002030

Google Scholar