[1]
Haifeng Sang. Gerschgorin variations of partitioned matrices[D]. Beihua University, (2007).
Google Scholar
[2]
R.A. Horn, C.R. Johnson. Matrix analysis[M]. Cambridge university press, (1990).
Google Scholar
[3]
R.S. Varga. Gershgorin and his circles[M]. Springer-Verlag Press, Berlin, (2004).
Google Scholar
[4]
Ostrowski. jber die determinanten mit jberwiegender hauptdiagonale[J]. Commentarii Mathematici Helvetici, 1937, 10(1): 69-96.
DOI: 10.1007/bf01214284
Google Scholar
[5]
V.N. Solov'ev. A generalization of Gershgorin's theorem[J]. Mathematics of the USSR-Izvestiya, 1984, 23(3): 545.
Google Scholar
[6]
V.A. Pupkov. On an isolated eigenvalue of a matrix and the structure of the corresponding eigenvector[J]. USSR computational Mathematics and Mathematical physics, 1983, 23(6): 14-20.
DOI: 10.1016/s0041-5553(83)80070-6
Google Scholar
[7]
A. Berman, R.J. Plemmons. Nonnegative matrices[M]. Academic Press, New York, (1979).
Google Scholar
[8]
R.A. Brualdi, S. Mellendorf. Regions in the complex plane containing the eigenvalues of a matrix[J]. The American mathematical monthly, 1994, 101(10): 975-985.
DOI: 10.1080/00029890.1994.12004577
Google Scholar
[9]
A.J. Hoffman. Gersgorin variations I: on a theme of Pupkov and Solov'ev[J]. Linear Algebra and its Applications, 2000, 304(1): 173-177.
DOI: 10.1016/s0024-3795(99)00218-9
Google Scholar
[10]
Tian Luan, Li Guo. An approach to determine the non-sigularity matrices. Journal of Beihua University, 2013, 14(1): 32-34.
Google Scholar
[11]
Min Li, Qingchun Li. New criteria for nonsingular H-matrices[C]. Chinese journal of engineering mathematics, 2012, 715-719.
Google Scholar
[12]
Haifeng Sang, Qingchun Li. Gerschgorin variations of complex matrices[C]. The Second International Conference on Computer Science and Electronics Engineering , Hangzhou, 2013, 871-873.
DOI: 10.2991/iccsee.2013.219
Google Scholar
[13]
Haifeng Sang, Qingchun Li. Gerschgorin variations based on the additive approach[J]. Journal of Beihua University, 2013, To appear.
Google Scholar