The New Criterion for Determining Nonsigularity of Matrices

Article Preview

Abstract:

We discuss the problem of nonsingularity of complex partitioned matrices and give the new criterion for determining nonsigularity of complex partitioned matrices and irreducible partitioned matrices by the additive approach. And we obtain the new condition for a matrix to be a positive stable matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1262-1265

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haifeng Sang. Gerschgorin variations of partitioned matrices[D]. Beihua University, (2007).

Google Scholar

[2] R.A. Horn, C.R. Johnson. Matrix analysis[M]. Cambridge university press, (1990).

Google Scholar

[3] R.S. Varga. Gershgorin and his circles[M]. Springer-Verlag Press, Berlin, (2004).

Google Scholar

[4] Ostrowski. jber die determinanten mit jberwiegender hauptdiagonale[J]. Commentarii Mathematici Helvetici, 1937, 10(1): 69-96.

DOI: 10.1007/bf01214284

Google Scholar

[5] V.N. Solov'ev. A generalization of Gershgorin's theorem[J]. Mathematics of the USSR-Izvestiya, 1984, 23(3): 545.

Google Scholar

[6] V.A. Pupkov. On an isolated eigenvalue of a matrix and the structure of the corresponding eigenvector[J]. USSR computational Mathematics and Mathematical physics, 1983, 23(6): 14-20.

DOI: 10.1016/s0041-5553(83)80070-6

Google Scholar

[7] A. Berman, R.J. Plemmons. Nonnegative matrices[M]. Academic Press, New York, (1979).

Google Scholar

[8] R.A. Brualdi, S. Mellendorf. Regions in the complex plane containing the eigenvalues of a matrix[J]. The American mathematical monthly, 1994, 101(10): 975-985.

DOI: 10.1080/00029890.1994.12004577

Google Scholar

[9] A.J. Hoffman. Gersgorin variations I: on a theme of Pupkov and Solov'ev[J]. Linear Algebra and its Applications, 2000, 304(1): 173-177.

DOI: 10.1016/s0024-3795(99)00218-9

Google Scholar

[10] Tian Luan, Li Guo. An approach to determine the non-sigularity matrices. Journal of Beihua University, 2013, 14(1): 32-34.

Google Scholar

[11] Min Li, Qingchun Li. New criteria for nonsingular H-matrices[C]. Chinese journal of engineering mathematics, 2012, 715-719.

Google Scholar

[12] Haifeng Sang, Qingchun Li. Gerschgorin variations of complex matrices[C]. The Second International Conference on Computer Science and Electronics Engineering , Hangzhou, 2013, 871-873.

DOI: 10.2991/iccsee.2013.219

Google Scholar

[13] Haifeng Sang, Qingchun Li. Gerschgorin variations based on the additive approach[J]. Journal of Beihua University, 2013, To appear.

Google Scholar