Study of the Effect of High-Pulsed Electric Field Pretreatment on Hot Air Drying Rate of Scallop Muscle

Article Preview

Abstract:

To improve the drying rate and to reduce the energy consumption of aquatic product, scallop muscle were treated with high pulse electric field (HPEF) in different frequency, and different voltage. The hot air drying rate of treated scallop muscle was determined, meanwhile, several quality parameters such as the shrinkage and rehydration rate of samples with pretreatment were determined to compare with those of untreated samples. The results indicated that the drying rate of scallop muscle can be improved by HPEF pretreatment without affecting the quality, and 22.5kV for pretreatment voltage and 50Hz for pretreatment frequency is the optimum treated parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4184-4187

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Gwak, J.B. Eun: Journal of Aquatic Food Product Technology Vol. 19 (2010), p.274.

Google Scholar

[2] M.S. Reza, M. A. J. Bapary, M. N. Islam, M. Kamal: Journal of food processing and preservation Vol. 33(2009), p.47.

Google Scholar

[3] Y.X. Bai, Y.X. Yang, Q. Huang: Drying Technology Vol. 30 (2012), p.1051.

Google Scholar

[4] Y.X. Bai, B. Sun: Journal of Food Processing and Preservation Vol. 35 (2011), p.891.

Google Scholar

[5] G. C. Zhang, Z. H. Mao, C.X. Mu: Trans. CSAE Vol. 21 (2005), p.144.

Google Scholar

[6] J. A. Gallego-Juarez, G. Rodriguez-Corral: Drying Technology Vol. 17 (1999), p.597.

Google Scholar

[7] D. Yun, Y. Y. Zhao: Journal of Food Engineering Vol. 85 (2008), p.84.

Google Scholar

[8] U. Zimmermann, G. Pilwat, F. Riemann: Biophysical Journal Vol. 14 (1974), p.881.

Google Scholar

[9] N. I. Lebovka, N. V. Shynkaryk, E. Vorobiev: Journal of Food Engineering Vol. 78 (2007), p.606.

Google Scholar

[10] X. Duan, M. Zhang, X. L. Li, A.S. Mujumdar: Drying Technology Vol. 26 (2008), p.420.

Google Scholar

[11] M. Fincan, F. DeVito, P. Dejmek: Journal of Food Engineering Vol. 64 (2004), p.381.

Google Scholar

[12] N.I. Lebovka, I. Praporscic, E. Vorobiev: Journal of Food Engineering Vol. 59 (2005), p.309.

Google Scholar

[13] Y. l. Wu, Y. M. Guo, D. G. Zhang: Drying Technology Vol. 29 (2011), p.1714.

Google Scholar

[14] E. Amami, L. Khezami, E. Vorobiev, N. Kechaou: Drying Technology Vol. 26 (2008), p.231.

Google Scholar

[15] R. Soliva-Fortuny, A. Balasa, D. Knorr: Trends in Food Science & Technology Vol. 20 (2009), p.544.

Google Scholar

[16] B.I.O. Ade-Omowaye, N.K. Rastogi, A. Angersbach, D. Knorr: Journal of Food Engineering Vol. 54 (2002), p.35.

Google Scholar

[17] A. Angersbach, V. Heinz, D. Knorr: Lebensmittel-und Verpackungstechnik (LVT) Vol. 42 (1997), p.195.

Google Scholar

[18] T.K. Gachovska, A.A. Adedeji, M. Ngadi, G.V.S. Raghavan: Drying Technology Vol. 26 (2008), p.1244.

DOI: 10.1080/07373930802307175

Google Scholar

[19] M.V. Shynkaryk, N.I. Lebovka, E. Vorobiev: Drying Technology Vol. 26 (2008), p.695.

Google Scholar