Asymmetrical Elementary Excitations Responsible for the Ferrimagnetism in an Antiferromagnetic Spin-1/2 Zigzag Ladder

Article Preview

Abstract:

The finite-temperature magnetic properties of an antiferromagnetic (AF) bond alternating S=1/2 zigzag spin chain with asymmetrical AF next-nearest-neighbor (NNN) exchange interactions in an external magnetic field are investigated by means of the many-body Greens function theory within random phase approximation. The results show that when the NNN exchange interactions are asymmetrical, the spin system exhibit a clear ferrimagnetic ordering at finite temperatures. It is shown that the ferrimagnetic behavior is attributed to asymmetrical elementary excitations, resulting from the competition between the spin frustrations and magnetic excitations reduced by the asymmetrical NNN interactions. The mechanism of this ferrimagnetism is much different from a common one which originates from mixed spins with different spin values through antiparallel spin alignments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4262-4267

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.T. Lu, Y.J. Wang, S. Qin and T. Xiang: Phys. Rev. B Vol. 74 (2006), p.134425.

Google Scholar

[2] M. Hase, H. Kuroe, K. Ozawa, et al.: Phys. Rev. B Vol. 70 (2004), p.104426.

Google Scholar

[3] T. Tonegawa and I. Harada: J. Phys. Soc. Jpn. Vol. 56 (1987), p.2153.

Google Scholar

[4] I. Affleck, D. Gepner, H.J. Schultz and T. Ziman: J. Phys. A Vol. 22 (1989), p.511.

Google Scholar

[5] G. Castilla, S. Chakravarty and V.J. Emery: Phys. Rev. Lett. Vol. 75 (1995), p.1823.

Google Scholar

[6] F. Wu and W.Z. Wang: J. Phys.: Condens. Matter. Vol. 18 (2006), p.3837.

Google Scholar

[7] S. Mahdavifar: J. Phys.: Condens. Matter. Vol. 20 (2008), p.335230.

Google Scholar

[8] F.D.M. Haldane: Phys. Rev. Lett. Vol. 50 (1983), p.1153.

Google Scholar

[9] H.H. Hung and C.D. Gong: Phys. Rev. B Vol. 71 (2005), p.054413.

Google Scholar

[10] S.S. Gong and G. Su: Phys. Rev. B Vol. 78 (2008), p.104416.

Google Scholar

[11] M.C. Cross and D.S. Fisher: Phys. Rev. B Vol. 19 (1979), p.402.

Google Scholar

[12] F.D. Haldane: Phys. Rev. B Vol. 25 (1982), p.4925.

Google Scholar

[13] R. Bursill, G.A. Gehring, D.J. Farnell, et al.: J. Phys.: Condens. Matter. Vol. 7 (1995), p.8605.

Google Scholar

[14] C.K. Majumdar and D.K. Ghosh: J. Math. Phys. Vol. 10 (1969), p.1388.

Google Scholar

[15] S.R. White and I. Affleck: Phys. Rev. B Vol. 54 (1996), p.9862.

Google Scholar

[16] N. Motoyama, H. Eisaki and S. Uchida: Phys. Rev. Lett. Vol. 76 (1996), p.3212.

Google Scholar

[17] N. Maeshima, M. Hagiwara, et al.: J. Phys.: Condens. Matter. Vol. 15 (2003), p.3607.

Google Scholar

[18] J. Riera and A. Dobry: Phys. Rev. B Vol. 51 (1995), p.16098.

Google Scholar

[19] Y. Mizuno, T. Tohyama, S. Maekawa, et al.: Phys. Rev. B Vol. 57 (1998), p.5326.

Google Scholar

[20] L. Capogna, M. Mayr, P. Horsch, et al.: Phys. Rev. B Vol. 71 (2005), p.140402.

Google Scholar

[21] H.B. Callen: Phys. Rev. Vol. 130 (1963), p.890.

Google Scholar

[22] S.V. Tyablikov: Methods in the Quantum Theory of Magnetism, Plenum, New York (1967).

Google Scholar

[23] H.Y. Wang, K.Q. Chen and E.G. Wang: Phys. Rev. B Vol. 66 (2002), p.092405.

Google Scholar

[24] H.H. Fu, K.L. Yao and Z.L. Liu: J. Chem. Phys. Vol. 129 (2008), p.134706.

Google Scholar

[25] H.H. Fu, K.L. Yao and Z.L. Liu: Phys. Lett. A Vol. 358 (2006), p.443.

Google Scholar

[26] D. Yamamoto, S. Todo and S. Kurihara: Phys. Rev. B Vol. 78 (2008), p.024440.

Google Scholar

[27] N.N. Bogolyubov and S.V. Tyablikov: Sov. Phys. Dokl. Vol. 4 (1959), p.589.

Google Scholar

[28] P. Fröbrich and P.J. Kuntz: Phys. Rep. Vol. 432 (2006), p.223.

Google Scholar