A Class of Large Family of Binary Sequences with Low Correlation and Large Linear Span

Article Preview

Abstract:

In this paper, a new family of binary sequences of period is proposed, where and . The presented family takes 7-valued correlation values , , , , , and . For and , it is proved that the proposed sequence family has linear spans , where l = 2, 3, 4, 5, 6, 7, and the distribution of linear span of sequences in is determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1562-1567

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt: Spread Spectrum Communications Handbook( McGraw Hill, USA 2001).

Google Scholar

[2] T. Kasami: Combinatorial Mathematics and Its Applications (Univ. North Carolina Press, USA 1969).

Google Scholar

[3] R. Gold: IEEE Trans. Inf. Theory, vol. 14 (1968), no. 1, p.154.

Google Scholar

[4] J. D. Olsen, R. A. Scholt, and L. R. Welch: IEEE Trans. Inf. Theory, vol. IT-28(1982), no. 6, p.858.

Google Scholar

[5] Chang, et al: IEEE Trans. Inf. Theory, vol. 46 (2000), no. 2, p.680.

Google Scholar

[6] S. Rothaus: IEEE Trans. Inf. Theory, vol. 39 (1993), no. 2, p.654.

Google Scholar

[7] N. Y. Yu and G. Gong: IEEE Trans. Inf. Theory, vol. 52(2006), no. 4, p.1624.

Google Scholar

[8] Z. Zhou and X. Tang: IEICE Trans. Fundamentals vol. E92-A(2009), no. 1, p.291.

Google Scholar

[9] F. Zeng, in: The Third International Workshop on Signal Design and Its Applications in Communications (Chengdu, China, August 8-10, 2007), p.56.

Google Scholar

[10] J. S. No and P. V. Kumar: IEEE Trans. Inf. Theory, vol. 35 (1989), no. 2, p.371.

Google Scholar

[11] Klapper: IEEE Trans. Inf. Theory, vol. 41(1995), no. 2, pp.654-656.

Google Scholar

[12] X. Zeng, L. HU and W. Jiang: IEICE Trans. Fundamentals, vol. E89-A(2006), no. 7, p.292.

Google Scholar

[13] Y. Niho: Multivalued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences (Ph. D., Univ. Southern Calif., USA 1972).

Google Scholar

[14] T. Helleseth: Discrete Mathematics, vol. 16 (1976), no. 3, p.209.

Google Scholar

[15] R. Lidl, H. Niederreiter, Finite Fields (Addison-Wesley, USA 1983).

Google Scholar

[16] E. L. Key: IEEE Trans. Theory, vol. IT-22(1976), p.732.

Google Scholar