[1]
A. Constantin, R. Ivanov: On an integrable two-component Camassa-Holm shallow water system. Phys Lett A, (2008), pp.7129-7132.
DOI: 10.1016/j.physleta.2008.10.050
Google Scholar
[2]
M. Chen, S. Q. Liu and Y. J. Zhang: A 2-component generalization of the Camassa-Holm equation and its solutions. Lett Math Phys, 75, (2006), pp.1-15.
DOI: 10.1007/s11005-005-0041-7
Google Scholar
[3]
R. Danchin: A few remarks on the Camassa-Holm equation. Differential Integral Equations, 14, (2001), pp.953-988.
DOI: 10.57262/die/1356123175
Google Scholar
[4]
J. Escher, Z. Yin: Initial boundary value problems of the Camassa-Holm equation. Comm Partial Differential Equations, 33, (2008), pp.377-395.
DOI: 10.1080/03605300701318872
Google Scholar
[5]
J. Escher, Z. Yin: Initial boundary value problems for nonlinear dispersive wave equations. J Funct Anal, 256, (2009), pp.479-508.
DOI: 10.1016/j.jfa.2008.07.010
Google Scholar
[6]
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou: Persistence properties and unique continuation of solutions of the Camassa-Holm equations. Comm Maths Phys, 271, (2007), pp.511-522.
DOI: 10.1007/s00220-006-0172-4
Google Scholar
[7]
J. Escher, O. Lechtenfeld and Z. Yin: Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Contin Dyn Syst Ser A, 19, (2007), pp.493-513.
DOI: 10.3934/dcds.2007.19.493
Google Scholar
[8]
A. Constantin, R. Ivanov : On an integrable two-component Camassa-Holm shallow water system. Phys Lett A, 372, (2008), pp.7129-7132.
DOI: 10.1016/j.physleta.2008.10.050
Google Scholar
[9]
C. Guan, Z. Yin: Global solutions and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. J Differential Equations, 248, (2010), p.2003-(2014).
DOI: 10.1016/j.jde.2009.08.002
Google Scholar
[10]
Z. G. Guo , L. D. Ni: Persistence Properties and Unique Continuation of Solutions to a Two-component Camassa-Holm Equation. Math Phys Anal Geom, 14(2), (2011), pp.101-114.
DOI: 10.1007/s11040-011-9089-z
Google Scholar