[1]
D.H. Yu, L.H. Zhao, Natural boundary integral method and related numerical methods, Eng. Anal. Bound. Elem., 28 (2004), 937-944.
DOI: 10.1016/s0955-7997(03)00120-6
Google Scholar
[2]
H.D. Han, X.N. Wu, Artificial boundary method-numerical Solution of partial differential equation in unbounded domains, Beijing: Tsinghua University Press, (2009).
Google Scholar
[3]
M. Aurada, M. Feischl, M. Karkulik, D. Praetorius, A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling, Eng. Anal. Bound. Elem., 36 (2012), 255-266.
DOI: 10.1016/j.enganabound.2011.07.017
Google Scholar
[4]
Q. Zheng, J. Wang, J.Y. Li, The coupling method with the natural boundary reduction on an ellipse for exterior anisotropic problems, CMES: Comp. Mod. Eng. & Sci., 72 (2011), 103-113.
Google Scholar
[5]
D.H. Yu, Natural boundary integral method and its applications, Dordrecht/New York/London/Beijing: Kluwer Academic Publisher/Science Press, (2002).
Google Scholar
[6]
D. Givoli, Recent advances in the DtN FE method, Arch. Comput. Method, 6 (1999), 71-116.
Google Scholar
[7]
A. Ditkowski, N. Gavish, A grid redistribution method for singular problems, J. Comput. Phy., 228 (2009), 2354-2365.
DOI: 10.1016/j.jcp.2008.11.035
Google Scholar
[8]
R. Li, T. Tang, and P. -W. Zhang, Moving mesh methods in multiple dimensions based on Harmonic Maps, J. Comput. Phy., 170 (2001), 562-588.
DOI: 10.1006/jcph.2001.6749
Google Scholar
[9]
W.L. Wendland, D.H. Yu, Adaptive boundary element methods for strongly elliptic integral Equations, Numer. Math., 53 (1988), 539-558.
DOI: 10.1007/bf01397551
Google Scholar
[10]
W. Sun, N.G. Zamani, An adaptive h-r boundary element algorithm for the Laplace equation, Inter. J. Numer. Meth. Eng., 33 (1992), 537-552.
DOI: 10.1002/nme.1620330305
Google Scholar
[11]
E. Kita, N. Kamiya, Error estimation and adaptive mesh refinement in boundary element method, an overview, Eng. Anal. Bound. Elem., 25 (2001), 479-495.
DOI: 10.1016/s0955-7997(01)00018-2
Google Scholar