[1]
Z. X. Cai. Robotics [M]. Beijing: Tsinghua University Press, 2000: 3-15.
Google Scholar
[2]
V. Pravin. Smart cars on smart roads: problems of controls [J]. IEEE Trans. on Automatic Control, l993. 38(2): 195-207.
DOI: 10.1109/9.250509
Google Scholar
[3]
X. Nicolle, A. Oliver, J. Savakis. An approach to description and analysis of hybrid Systems[M], LNCS 736, Springer-Velar, 1993: 20-27.
Google Scholar
[4]
L. J. Zhang, D. Z. Cheng, C. W. Li. Disturbance decoupling of switched nonlinear systems [J]. Proceedings of the 23rd Chinese Control Conference, 2004. 42(2): 1591-1595.
Google Scholar
[5]
C. Chase, J. Serrano, P. J. Ramadge. Periodicity chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Transactions on Automatic Control, 1993. 38(1): 70-83.
DOI: 10.1109/9.186313
Google Scholar
[6]
R.W. Brockett. Hybrid modes for motion control systems [M], In Trent Elman H L, Williams J C(Ends), Essays in control. Boston: Birkhauser, 1993: 1-27.
Google Scholar
[7]
Shtesse, Pzanopolov, Ozerov. Control of multiple modular dct does power converter sin conventional and dynamic sliding surfaces [J]. IEEE Trans. Circuits Systems, 1998. 45(10): 1091-1100.
DOI: 10.1109/81.728863
Google Scholar
[8]
A. Back, J. Guckenheimer, M. A. Myers Dynamical simulation facility for hybrid system [M]. In R. L. Grossman, NE rode A, Ran A P, H. Rishel(ads), Hybrid systems, New York: Springer, 1993: 35-40.
Google Scholar
[9]
P. Park. A delay-dependent stability criterion for systerms with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999. 44(4): 876-877.
DOI: 10.1109/9.754838
Google Scholar
[10]
Y. S. Moon, P. Park, W. H. Kwon, Y. S. Lee. Delay-dependent robust stabilization of uncertain state delayed systerms. International Journal of Control, 2001. 74(14): 1447-1455.
DOI: 10.1080/00207170110067116
Google Scholar
[11]
E. Fridman, U. Shaked. An improved stabilization method for linear time-delay systerms. IEEE Transactions on Automatic Control, 2002. 47(11): 1931-(1937).
DOI: 10.1109/tac.2002.804462
Google Scholar
[12]
J. Zhao, G. M. Dimirovski. Quadratic stability of a class of switched nonlinear systems. IEEE Transactions on Automatic Control, 2004. 49(4): 574-578.
DOI: 10.1109/tac.2004.825611
Google Scholar
[13]
L. Yu. Robust control-Linear matrix inequality processing method [M]. Beijing: Tsinghua University Press, 2002: 68-95.
Google Scholar