[1]
H.A. Mohammed, G. Bhaskaran, N. H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renew Sust Ener Rev 15 (2011) 1502-1512.
DOI: 10.1016/j.rser.2010.11.031
Google Scholar
[2]
H.A. Mohammed, A.A. Al-aswadi, N.H. Shuaib, R. Saidur, Convective heat transfer fluid flow study over a step using nanofluids: A review, Renew Sust Ener Rev 15 (2011) 2921.
DOI: 10.1016/j.rser.2011.02.019
Google Scholar
[3]
W. Daungthougsuk, S. Wongwises, 2007. A critical review of convective heat transfer nanofluids. Renew. Sust. Energy Rev. 11, 797-817.
DOI: 10.1016/j.rser.2005.06.005
Google Scholar
[4]
S.X. Gao, S. X., J.P. Hartnett, 1992. Non-Newtonian fluid laminar flow and forced convection heat transfer in rectangular ducts. Int. Commu. Heat Mass Transfer 19, 673-686.
DOI: 10.1016/0735-1933(92)90050-r
Google Scholar
[5]
S. X. Gao, J. P. Hartnett, 1993. Steady flow of non-newtonian fluids through rectangular ducts. Int. Commu. Heat Mass Transfer 20, 197-210.
DOI: 10.1016/0735-1933(93)90048-z
Google Scholar
[6]
S. Gh. Etemad, A. S. Mujumdar, 1994. The effect of aspect ratio and rounded corners on the laminar forced convection heat transfer of a non-newtonian fluid in the entrance region of a rectangular duct. Int. Commu. Heat Mass Transfer 21 (2), 283-296.
DOI: 10.1016/0735-1933(94)90026-4
Google Scholar
[7]
W. M. Yan, C. Y. Soong, 1995. Simultaneously developing mixed convection in radially rotating rectangular ducts. Int. J. Heat Mass Transfer 38 (4), 665-677.
DOI: 10.1016/0017-9310(94)00192-x
Google Scholar
[8]
S. X. Gao, J. P. Hartnett, 1996. Heat transfer behavior of reiver-rivlin fluids in rectangular ducts. Int. J. Heat Mass Transfer 39, 1317-1324.
DOI: 10.1016/0017-9310(95)00041-0
Google Scholar
[9]
W. M. Yan, 1996. Combined buoyancy effects of thermal and mass diffusion on laminar forced convection in horizontal rectangular ducts. Int. J. Heat Mass Transfer 39 (7), 1479-1488.
DOI: 10.1016/0017-9310(95)00227-8
Google Scholar
[10]
M. F. Naccache, P. R. Souza Mendes, 1996. Heat transfer to non-newtonian fluids in laminar flow through rectangular ducts. Int. J. Heat Fluid Flow 17, 613-620.
DOI: 10.1016/s0142-727x(96)00062-8
Google Scholar
[11]
P. Payzar, 1997. Heat transfer enhancement in laminar flow of viscoelastic fluids through rectangular ducts. Int. J. Heat Mass Transfer 40 (3), 745-756.
DOI: 10.1016/0017-9310(96)00091-9
Google Scholar
[12]
C. H. Sohn, S. T. Ahn, S. Shin, 2000. Heat transfer behavior of temperature-dependent viscoelastic non-newtonian fluid with buoyancy effect in 2: 1 rectangular duct. Int. Commu. Heat Mass Transfer 27 (2), 159-168.
DOI: 10.1016/s0735-1933(00)00097-x
Google Scholar
[13]
S. G. Etemad, M. Sadeghi, 2001. Non-newtonian pressure drop and critical Reynolds number through rectangular duct. Int. Commu. Heat Mass Transfer 28 (4), 555-563.
DOI: 10.1016/s0735-1933(01)00260-3
Google Scholar
[14]
H. C. Chiu, J. H. Jang, W. M. Yan, 2007. Mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Int. J. Heat Mass Transfer 50, 2874-2882.
DOI: 10.1016/j.ijheatmasstransfer.2007.01.010
Google Scholar
[15]
P. Talukdar, C. R. Iskra, C. J. Simonson, 2008. Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data. Int. J. Heat Mass Transfer 50, 2874-2882.
DOI: 10.1016/j.ijheatmasstransfer.2007.08.034
Google Scholar
[16]
M. E. Sayed-Ahmed, K. M. Kishk, 2008. Heat transfer for herschel-bulkey fluids in the entrance region of a rectangular duct. Int. Commu. Heat Mass Transfer 35, 1007-1016.
DOI: 10.1016/j.icheatmasstransfer.2008.05.002
Google Scholar
[17]
M. Capobianchi, D. Wagner, 2010. Heat transfer in laminar flows of extended modified power law fluids in rectangular ducts. Int. J. Heat Mass Transfer 53, 558-563.
DOI: 10.1016/j.ijheatmasstransfer.2009.08.003
Google Scholar
[18]
A. Barletta, 2002. Fully developed mixed convection and flow reversal in a vertical rectangular duct with uniform wall heat flux, Int. J. Heat Mass Transfer 45, 641-654.
DOI: 10.1016/s0017-9310(01)00160-0
Google Scholar
[19]
A. Barletta, E. R. Schio, E. Zanchini, 2003. Combined forced and free flow in a vertical rectangular duct prescribed wall heat flux. Int. J. Heat Fluid Flow 24, 874-887.
DOI: 10.1016/s0142-727x(03)00090-0
Google Scholar
[20]
M. Greiner, G.J. Spencer, P.F. Fischer, 1998. Direct numerical simulation of three-dimensional flow and augmented heat transfer in a grooved channel. J. Heat Transfer 120, 717-723.
DOI: 10.1115/1.2824341
Google Scholar
[21]
Y. Asako, M. Faghri, 1988. Three-Dimensional laminar heat transfer and fluid flow characteristics in the entrance region of a rhombic duct. J. Heat Transfer 110, 855-861.
DOI: 10.1115/1.3250585
Google Scholar
[22]
A.A. Al-Aswadi, H.A. Mohammed, N.H. Shuaib, A. Campo, 2010. Laminar forced convection flow over a backward facing step using nanofluids. Int. Comm. Heat Mass Transfer 37, 950-957.
DOI: 10.1016/j.icheatmasstransfer.2010.06.007
Google Scholar
[23]
H. A. Mohammed, H. A. Hasan, M. A. Wahid, Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts, Int Commun Heat Mass Transfer 40 (1) (2013)36-46.
DOI: 10.1016/j.icheatmasstransfer.2012.10.023
Google Scholar
[24]
M. Corcione, 2010. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int. J. Therm. Sci. 49, 1536-1546.
DOI: 10.1016/j.ijthermalsci.2010.05.005
Google Scholar
[25]
K. Khanafer, K. Vafai, M. Lighstone, 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46, 3639-3653.
DOI: 10.1016/s0017-9310(03)00156-x
Google Scholar
[26]
S.V. Patankar, 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York, (1980).
Google Scholar