Effect of Inclination Angle on Three-Dimensional Combined Convective Heat Transfer of Nanofluids in Rectangular Channels

Article Preview

Abstract:

Combined convective nanofluids flow and heat transfer in an inclined rectangular duct is numerically investigated. Three dimensional, laminar Navier-Stokes and energy equations were solved using the finite volume method. Pure water and four types of nanofluids such as Au, CuO, SiO2 and TiO2with volume fractions range of 2% φ 7% are used. This investigation covers the following ranges: 2 × 106 Ra 2 × 107, 100 Re 1000 and 30° Θ 60°. The results revealed that the Nusselt number increased as Rayleigh number increased.SiO2nanofluid has the highest Nusselt number while Au nanofluid has the lowest Nusselt number. An increasing of the duct inclination angle decreases the heat transfer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-184

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Mohammed, G. Bhaskaran, N. H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renew Sust Ener Rev 15 (2011) 1502-1512.

DOI: 10.1016/j.rser.2010.11.031

Google Scholar

[2] H.A. Mohammed, A.A. Al-aswadi, N.H. Shuaib, R. Saidur, Convective heat transfer fluid flow study over a step using nanofluids: A review, Renew Sust Ener Rev 15 (2011) 2921.

DOI: 10.1016/j.rser.2011.02.019

Google Scholar

[3] W. Daungthougsuk, S. Wongwises, 2007. A critical review of convective heat transfer nanofluids. Renew. Sust. Energy Rev. 11, 797-817.

DOI: 10.1016/j.rser.2005.06.005

Google Scholar

[4] S.X. Gao, S. X., J.P. Hartnett, 1992. Non-Newtonian fluid laminar flow and forced convection heat transfer in rectangular ducts. Int. Commu. Heat Mass Transfer 19, 673-686.

DOI: 10.1016/0735-1933(92)90050-r

Google Scholar

[5] S. X. Gao, J. P. Hartnett, 1993. Steady flow of non-newtonian fluids through rectangular ducts. Int. Commu. Heat Mass Transfer 20, 197-210.

DOI: 10.1016/0735-1933(93)90048-z

Google Scholar

[6] S. Gh. Etemad, A. S. Mujumdar, 1994. The effect of aspect ratio and rounded corners on the laminar forced convection heat transfer of a non-newtonian fluid in the entrance region of a rectangular duct. Int. Commu. Heat Mass Transfer 21 (2), 283-296.

DOI: 10.1016/0735-1933(94)90026-4

Google Scholar

[7] W. M. Yan, C. Y. Soong, 1995. Simultaneously developing mixed convection in radially rotating rectangular ducts. Int. J. Heat Mass Transfer 38 (4), 665-677.

DOI: 10.1016/0017-9310(94)00192-x

Google Scholar

[8] S. X. Gao, J. P. Hartnett, 1996. Heat transfer behavior of reiver-rivlin fluids in rectangular ducts. Int. J. Heat Mass Transfer 39, 1317-1324.

DOI: 10.1016/0017-9310(95)00041-0

Google Scholar

[9] W. M. Yan, 1996. Combined buoyancy effects of thermal and mass diffusion on laminar forced convection in horizontal rectangular ducts. Int. J. Heat Mass Transfer 39 (7), 1479-1488.

DOI: 10.1016/0017-9310(95)00227-8

Google Scholar

[10] M. F. Naccache, P. R. Souza Mendes, 1996. Heat transfer to non-newtonian fluids in laminar flow through rectangular ducts. Int. J. Heat Fluid Flow 17, 613-620.

DOI: 10.1016/s0142-727x(96)00062-8

Google Scholar

[11] P. Payzar, 1997. Heat transfer enhancement in laminar flow of viscoelastic fluids through rectangular ducts. Int. J. Heat Mass Transfer 40 (3), 745-756.

DOI: 10.1016/0017-9310(96)00091-9

Google Scholar

[12] C. H. Sohn, S. T. Ahn, S. Shin, 2000. Heat transfer behavior of temperature-dependent viscoelastic non-newtonian fluid with buoyancy effect in 2: 1 rectangular duct. Int. Commu. Heat Mass Transfer 27 (2), 159-168.

DOI: 10.1016/s0735-1933(00)00097-x

Google Scholar

[13] S. G. Etemad, M. Sadeghi, 2001. Non-newtonian pressure drop and critical Reynolds number through rectangular duct. Int. Commu. Heat Mass Transfer 28 (4), 555-563.

DOI: 10.1016/s0735-1933(01)00260-3

Google Scholar

[14] H. C. Chiu, J. H. Jang, W. M. Yan, 2007. Mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Int. J. Heat Mass Transfer 50, 2874-2882.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.010

Google Scholar

[15] P. Talukdar, C. R. Iskra, C. J. Simonson, 2008. Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data. Int. J. Heat Mass Transfer 50, 2874-2882.

DOI: 10.1016/j.ijheatmasstransfer.2007.08.034

Google Scholar

[16] M. E. Sayed-Ahmed, K. M. Kishk, 2008. Heat transfer for herschel-bulkey fluids in the entrance region of a rectangular duct. Int. Commu. Heat Mass Transfer 35, 1007-1016.

DOI: 10.1016/j.icheatmasstransfer.2008.05.002

Google Scholar

[17] M. Capobianchi, D. Wagner, 2010. Heat transfer in laminar flows of extended modified power law fluids in rectangular ducts. Int. J. Heat Mass Transfer 53, 558-563.

DOI: 10.1016/j.ijheatmasstransfer.2009.08.003

Google Scholar

[18] A. Barletta, 2002. Fully developed mixed convection and flow reversal in a vertical rectangular duct with uniform wall heat flux, Int. J. Heat Mass Transfer 45, 641-654.

DOI: 10.1016/s0017-9310(01)00160-0

Google Scholar

[19] A. Barletta, E. R. Schio, E. Zanchini, 2003. Combined forced and free flow in a vertical rectangular duct prescribed wall heat flux. Int. J. Heat Fluid Flow 24, 874-887.

DOI: 10.1016/s0142-727x(03)00090-0

Google Scholar

[20] M. Greiner, G.J. Spencer, P.F. Fischer, 1998. Direct numerical simulation of three-dimensional flow and augmented heat transfer in a grooved channel. J. Heat Transfer 120, 717-723.

DOI: 10.1115/1.2824341

Google Scholar

[21] Y. Asako, M. Faghri, 1988. Three-Dimensional laminar heat transfer and fluid flow characteristics in the entrance region of a rhombic duct. J. Heat Transfer 110, 855-861.

DOI: 10.1115/1.3250585

Google Scholar

[22] A.A. Al-Aswadi, H.A. Mohammed, N.H. Shuaib, A. Campo, 2010. Laminar forced convection flow over a backward facing step using nanofluids. Int. Comm. Heat Mass Transfer 37, 950-957.

DOI: 10.1016/j.icheatmasstransfer.2010.06.007

Google Scholar

[23] H. A. Mohammed, H. A. Hasan, M. A. Wahid, Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts, Int Commun Heat Mass Transfer 40 (1) (2013)36-46.

DOI: 10.1016/j.icheatmasstransfer.2012.10.023

Google Scholar

[24] M. Corcione, 2010. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int. J. Therm. Sci. 49, 1536-1546.

DOI: 10.1016/j.ijthermalsci.2010.05.005

Google Scholar

[25] K. Khanafer, K. Vafai, M. Lighstone, 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46, 3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[26] S.V. Patankar, 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York, (1980).

Google Scholar