Combined Convection Heat Transfer of Nanofluids Flow over Forward Facing Step in a Channel Having a Blockage

Article Preview

Abstract:

Numerical simulations of two dimensional laminar combined convection flows using nanofluids over forward facing step with a blockage are analyzed. The continuity, momentum and energy equations are solved using finite volume method (FVM) and the SIMPLE algorithm scheme is applied to examine the effect of the blockage on the heat transfer characteristics. In this project, several parameters such as different types of nanofluids (Al2O3, SiO2, CuO and ZnO), different volume fraction in the range of 1% - 4%, different nanoparticles diameter in the range of 25nm-80nm were used. Effects of different shapes of blockage (Circular, Square and Triangular) were studied. The numerical results indicated that SiO2nanofluid has the highest Nusselt number. The Nusselt number increased as the volume fraction and Reynolds number increase, while it decreases as the nanoparticles diameter increases. Circular blockage produced higher results compared to triangular and square one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-191

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Mohammed, G. Bhaskaran, N. H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renew. Sust. Ener. Rev. 15 (2011) 1502-1512.

DOI: 10.1016/j.rser.2010.11.031

Google Scholar

[2] H.A. Mohammed, A.A. Al-aswadi, N.H. Shuaib, R. Saidur, Convective heat transfer fluid flow study over a step using nanofluids: A review, Renew Sust. Ener. Rev15 (2011) 2921.

DOI: 10.1016/j.rser.2011.02.019

Google Scholar

[3] K. V. Wong, and M. J. Castillo, Heat transfer mechanisms and clustering in nanofluids, Advance in Mechanical Engineering, 10 (2010) 1155-1164.

Google Scholar

[4] S. Kakac and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int J Heat Mass Transfer, 52 (2009) 3187-3196.

DOI: 10.1016/j.ijheatmasstransfer.2009.02.006

Google Scholar

[5] Y. He, Y. Men, Y. Zhao, H. Lu, Y. Ding, Numerical investigation into the convective heat transfer of TiO2nanofluids flowing through a straight tube under the laminar flow conditions, Appl. Therm. Eng. 29 (2009) 1965-(1972).

DOI: 10.1016/j.applthermaleng.2008.09.020

Google Scholar

[6] Y. Xuan and Q. Li, Heat Transfer enhancement of Nanofluids, International Journal of Heat and Fluid Flow, 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[7] M.S. Liu, M.C. Lin, C.Y. Tsai, C.C. Wang, Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J Heat Mass Transfer 49 (2006) 3028.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.012

Google Scholar

[8] Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physical6 (2006) 1068-1071.

DOI: 10.1016/j.cap.2005.07.021

Google Scholar

[9] I. Yılmaz, H. F. Öztop, Turbulence forced convection heat transfer over double forward facing step flow, Int Commun Heat Mass Transfer, 33 (2006) 508-517.

DOI: 10.1016/j.icheatmasstransfer.2005.08.015

Google Scholar

[10] K. Chiba, R. lshida, K. Nakamura, Mechanism for entry flow instability through a forward-facing step channel, J. Non-Newtonian Fluid Mech, 57 (1995) 271-282.

DOI: 10.1016/0377-0257(94)01335-f

Google Scholar

[11] M. Sabanca, Noise generated by turbulent flow over forward facing steps, Computers & Fluids, 38 (2009) 1467-1479.

DOI: 10.1016/j.compfluid.2008.01.019

Google Scholar

[12] H. Stüer, A. Gyr,W. Kinzelbach, Laminar separation on a forward facing step, Eur. J. Mech. B/Fluids, 18 (1999) 675-692.

DOI: 10.1016/s0997-7546(99)00104-1

Google Scholar

[13] H. I. Abu-Mulaweh, B. F. Armaly, T. S. Chen, Measurements in buoyancy-opposing laminar flow over a vertical forward-facing step, Int. J. Heat Mass Transfer39 (1996) 1805-1813.

DOI: 10.1016/0017-9310(95)00278-2

Google Scholar

[14] M. Sherry, D. LoJacono, J. Sheridan, An experimental investigation of the recirculation zone formed downstream of a forward facing step, J. Wind Eng. 98 (2010) 888–894.

DOI: 10.1016/j.jweia.2010.09.003

Google Scholar

[15] H. Iwai, K. Nakabe, K. Suzuki, K. Matsubara, The effects of duct inclination angle on laminar mixed convective flows over a backward-facing step, Int J Heat Mass Transfer, 43 (2000) 473-485.

DOI: 10.1016/s0017-9310(99)00141-6

Google Scholar

[16] H. A. Mohammed, A. A. Al-aswadi, H. I. Abu-Mulaweh, N.H. Shuaib, Influence of nanofluids on mixed convective heat transfer over a horizontal backward facing step, Heat Transfer Asian Res. 27 (2011) 480-495.

DOI: 10.1002/htj.20344

Google Scholar

[17] A. Kumar, A. K. Dhiman, Effect of a circular cylinder on separated forced convection at a backward facing step, Int J Therm Sci 52 (2012) 176-185.

DOI: 10.1016/j.ijthermalsci.2011.09.014

Google Scholar

[18] R. S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int J Heat Mass Transfer 53 (2010) 4607-4618.

DOI: 10.1016/j.ijheatmasstransfer.2010.06.032

Google Scholar

[19] R. Chein, J. Chuang, Experimental microchannel heat sink performance studies using nanofluids, Int J Therm Sci 46 (2007) 57-66.

DOI: 10.1016/j.ijthermalsci.2006.03.009

Google Scholar

[20] A. A. Al-aswadi, H.A. Mohammed, N.H. Shuaib, A. Campo, Laminar forced convection flow over a backward facing step using nanofluid, Int Commun Heat Mass Transfer 37 (2010) 950-957.

DOI: 10.1016/j.icheatmasstransfer.2010.06.007

Google Scholar