Transient Modeling of a Lithium Bromide – Water Absorption Chiller

Article Preview

Abstract:

This article presents a thermodynamic framework for a lithium bromide – water absorption chiller, in which a transient model is developed to simulate the operation process. Local energy and mass balance within the main components like absorber, regenerator, condenser, evaporator and solution heat exchanger is respected to investigate the behavior of the chiller. Experimental correlations are used to predict heat transfer of the related working fluids. The cooling water is set to typical cooling tower conditions of tropical countries such as Singapore. The coefficient of performance (COP) is evaluated against a range of heat source temperatures from 75oC to 100oC. The results indicate the operation conditions of the chiller at its maximum COP is 95oC to 100oC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Yuan and K. E. Herold, Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation, HVAC and R Research, vol. 11, pp.377-393, (2005).

DOI: 10.1080/10789669.2005.10391144

Google Scholar

[2] L. A. McNeely, Thermodynamic properties of aqueous solutions of lithium bromide, ASHRAE Trans vol. 85, pp.413-434, (1979).

Google Scholar

[3] W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H. J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach, and T. Willkommen, The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, Journal of Engineering for Gas Turbines and Power, vol. 122, pp.150-180, (2000).

DOI: 10.1115/1.483186

Google Scholar

[4] IAPWS. Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance [Online]. Available: http: /www. iapws. org.

Google Scholar

[5] IAPWS. Release on the IAPWS Formulation 2011 for the Thermodynamic Conductivity of Ordinar Water Substance [Online]. Available: http: /www. iapws. org.

DOI: 10.1007/978-3-662-53219-5_3

Google Scholar

[6] M. J. Kirby and H. Perez-Blanco, Design model for horizontal tube water/lithium bromide absorbers, 1994, pp.1-10.

Google Scholar

[7] H.I. Abu-Mulaweh, D.W. Mueller, B. Wegmann, K. Speith, and B. Beohne, Design of a Bubble Pump Cooling System Demonstration Unit, Int. J. of Thermal & Environmental Engineering, vol. 2, pp.1-8, (2011).

DOI: 10.5383/ijtee.02.01.001

Google Scholar

[8] H. T. Chua, H. K. Toh, A. Malek, K. C. Ng, and K. Srinivasan, A general thermodynamic framework for understanding the behaviour of absorption chillers, International Journal of Refrigeration, vol. 23, pp.491-507, (2000).

DOI: 10.1016/s0140-7007(99)00077-8

Google Scholar

[9] C. W. Park, S. S. Kim, H. C. Cho, and Y. T. Kang, Experimental correlation of falling film absorption heat transfer in micro-scale hatched tubes, International Journal of Refrigeration, vol. 26, pp.758-763, (2003).

DOI: 10.1016/s0140-7007(03)00069-0

Google Scholar

[10] W. W. S. Charters, V. R. Megler, W. D. Chen, and Y. F. Wang, Atmospheric and sub-atmospheric boiling of H2O and LiBr/H2O solutions, International Journal of Refrigeration, vol. 5, pp.107-114, (1982).

DOI: 10.1016/0140-7007(82)90085-8

Google Scholar

[11] M. W. Shahzad, A. Myat, W. G. Chun, and K. C. Ng, Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator, Applied Thermal Engineering, vol. 50, pp.670-676, (2013).

DOI: 10.1016/j.applthermaleng.2012.07.003

Google Scholar