[1]
Kuangbiao Wang. Guidance technology and its applica-tion of rolling missile [J]. Journal of Projectiles Rockets Missiles and Guidance, 2002(03): 28-31. (in Chinese).
Google Scholar
[2]
Yu Fu, Jun Yang. Double Channel Autopilot Decoupling Control for Guided Projectile[J]. Computer Simulation, 2009(10): 48-51. (in Chinese).
Google Scholar
[3]
Xingfang Qian, Ruixiong Lin, Ya'nan Zhao. Missile flight dyanmics[M]. Beijing Institute of Technology Press, 2000. (in Chinese).
Google Scholar
[4]
Theodoulis S, Morel Y, Wernert P. Modelling and stability analysis of the 155 mm spin-stabilised projectile equipped with steering fins[J]. International Journal of Modelling Identification and ControlInt Model Identif. Control (Switzerland). 2011, 14(3): 189-204.
DOI: 10.1504/ijmic.2011.042655
Google Scholar
[5]
Wernert P. Stability analysis for canard guided dual-spin stabilized projectiles[Z]. Chicago, IL, United states: (2009).
DOI: 10.2514/6.2009-5843
Google Scholar
[6]
Wernert P, Leopold F, Bidino D, et al. Wind tunnel tests and open-loop trajectory simulations for a 155 mm canards guided spin stabilized projectile[Z]. Honolulu, HI, United states: (2008).
DOI: 10.2514/6.2008-6881
Google Scholar
[7]
Xugang Wang, Zhongyuan Wang. Effect of Roll Angular Velocity and Actuator Time Constant on Guidance Precision of Guided Projectile[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2011(02): 182-186. (in Chinese).
Google Scholar
[8]
Luojing Chen, Li Liu, Jianqiao Yu. Decoupling control of a double-channel control rolling missile autopiot[J]. Transactions of Beijing Institute of Techology, 2008, 28(1): 11-14. (in Chinese).
Google Scholar
[9]
Xiaoyong Yan, Cheng Zhang, Shuxing Yang. Decoupling Technique for a Class of Rolling Missile[J]. Journal of Ballistics. 2009(04): 17-20.
Google Scholar