p.155
p.161
p.166
p.172
p.178
p.192
p.198
p.207
p.215
Optimal Solving of the Contradictory Problem between Hydraulic Cylinder's Precision and Stability with Extenics Theory
Abstract:
In the optimisation stage of the systems one of the more important step is the optimisation of the dynamic behavior of all elements of the system, with priority the elements what have the slow frequency, like motors. The paper try to show how will be possible to optimise very easily the dynamic behavior of elements and systems, using LabVIEW propre instrumentation, the transfer functions theory and the Extenics Theory to solve the contradictory problems. By appling the virtual LabVIEW instrumentation will be possible to choose on-line the optimal values for each constructive and functional parameters of the elements and the systems to obtain one good dynamic answer: maximal acceleration without vibration, minimum answer time and maximal precision. In the paper was defined the optimal area of the precision-stability by imposed the breaking frequency from the Bode characteristics to optain the desired acceleration time. The paper shown the desired constraints and by using the Extenics theory was possible to choose the optimal way of the precision-stability contradictory problem. In the research were used some different virtual LabVIEW instrumentation to simulate the dynamic behavior of the cylinder when the active area, flow loss gradient, force gradient were changed in the physical domain. By using the assisted research and the Extenics theory was possible to find the optimal value for the precision-stability dynamic parameter.
Info:
Periodical:
Pages:
178-191
Citation:
Online since:
August 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: