A Cyclic Plasticity Model for Advanced Light Metal Alloys

Article Preview

Abstract:

Advanced light metals have recently attracted the interest of the aerospace and automotive industry. The need for accurate description of their cyclic inelastic response under various loading histories becomes increasingly important. Cyclic mean stress relaxation and ratcheting are two of the phenomena under investigation. A combined kinematic isotropic hardening model is implemented for the simulation of the behavior of Aluminum and Titanium alloys in uniaxial mean stress relaxation and ratcheting. The obtained results indicate that the model can perform well in these cases. This preliminary analysis provides useful insight for the evaluation of the models capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. J. Armstrong and C. O. Frederick, Tech. Rep. RD/B/N 731, GE (1966).

Google Scholar

[2] J. L. Chaboche, K. Van Dang and G. Cordier, in SMIRT-5, Berlin (1979).

Google Scholar

[3] T. Hassan, L. Taleb and L. Krishna: Int. J. Plasticity Vol. 24 (2008), p.1863.

Google Scholar

[4] J. L. Chaboche: Int. J. Plasticity Vol. 7 (1991), p.661.

Google Scholar

[5] N. Ohno and J. D. Wang: Int. J. Plasticity Vol. 9 (1993), p.375.

Google Scholar

[6] Y. Jiang and H. Sehitoglu: Int. J. Plasticity Vol. 10 (1994), p.849.

Google Scholar

[7] P. Delobelle, P. Robinet and L. Bocher: Int. J. Plasticity Vol. 11 (1995), p.295.

Google Scholar

[8] G. Z. Kang, Q. Gao and X. J. Yang: J. Non-linear Mech. Vol. 39 (2004), p.843.

Google Scholar

[9] J. L. Chaboche, P. Kanoute and F. Azzouz: Int. J. Plasticity Vol. 35 (2012), p.44.

Google Scholar

[10] T. Hassan and S. Kyriakides: Int. J. Plasticity Vol. 8 (1992), p.91.

Google Scholar

[11] S. Bari and T. Hassan: Int. J. Plasticity Vol. 16 (2000), p.381.

Google Scholar

[12] S. Bari and T. Hassan: Int. J. Plasticity Vol. 18 (2002), p.873.

Google Scholar

[13] M. Kobayashi and N. Ohno: Int. J. Numer. Meth. Eng. Vol. 53 (2002), p.2217.

Google Scholar

[14] X. Chen, R. Jiao and K.S. Kim: Int. J. Plasticity Vol. 21 (2005), p.161.

Google Scholar

[15] A. Arcari and N. E. Dowling: Int J. Fatigue Vol. 42 (2012), p.238.

Google Scholar

[16] J. L. Chaboche and O. Jung: Int. J. Plasticity Vol. 13 (1997), p.785.

Google Scholar

[17] W. Hu, C. H. Wang and S. Barter, DSTO-RR-153 (1999).

Google Scholar

[18] W. Z. Zhuang, and G. R. Halford: Int. J. Fatigue Vol. 23 (2001), p.31.

Google Scholar

[19] V. Landersheim, T. Bruder, H. and H. Hanselka: Procedia Eng. Vol. 10 (2011), p.595.

Google Scholar

[20] M. Becker, and H. P. Hackenberg: Int. J. Plasticity Vol. 27 (2011), p.596.

Google Scholar

[21] Y. F. Dafalias, K. I. Kourousis and G. J. Saridis: Int. J. Solids Struct. Vol. 45 (2008), p.2861.

Google Scholar

[22] Y. F. Dafalias, K. I. Kourousis and G. J. Saridis: Int. J. Solids Struct. Vol. 45 (2008), p.4878.

Google Scholar

[23] Y. F. Dafalias and H. P. Feigenbaum: Int. J. Plasticity Vol. 27 (2011), p.479.

Google Scholar

[24] Q. Kan, W. Yan, G. Kang and S. Guo: Adv. Mater. Res. Vol. 415-417 (2012), p.2318.

Google Scholar

[25] Y. Zhentao, Z. Lian, D. Ju and G. Haicheng: Mater. Sc. and Eng. Vol. A280 (2000), p.192.

Google Scholar