Controlling the Nanostructural Characteristics of TiO2 Nanoparticles Derived from Ilmenite Mineral of Bangka Island through Sulfuric Acid Route

Article Preview

Abstract:

The ilmenite mineral (FeO.TiO2) from Bangka Island-Indonesia is an important source for synthesizing TiO2 nanoparticles. However, the process is rather difficult since this mineral still contains many impurities and minor elements. Therefore, controlling the synthesizing route parameters is essential for obtaining the desired TiO2 nanoparticle characteristics. In the current work, we proposed a modified process involving the use of sulfuric acid through sol-gel method to provide titanyl sulfate (TiOSO4) solution as the inorganic precursor. For investigation purposes, several parameters were varied including volume ratio of water and titanyl sulfate, addition of iron powder (seeding) and dextrin coagulant, calcination time and temperature. The results showed that TiO2 nanoparticles can be succesfully synthesized using TiOSO4 precursor derived from Bangka ilmenite. Under all processing conditions, the resulting TiO2 nanoparticles have sphere-like shape and were indexed as the anatase TiO2 phase. The results also showed that the average particle size was reduce from 96 188 nm to 32 40 nm when the volume ratio of water and titanylsulfate was increased from 3:1 to 6:1. The addition of iron powder as seeding has improved the purity of TiO2 to ~ 95.01 wt%, in comparison to that of without seeding, which is ~92.78 wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-40

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Alam Khan, M. Shaheer Akhtar and O-Bong Yang: Sol. Energy Vol. 84 (2010), p.2195.

Google Scholar

[2] Po-Ya Hsu, Hsin-Fang Lee, Sz-Min Yang, Yi-Ting Chua, Yung-Liang Tung and Ji-Jung Kai: Procedia Engineering Vol. 36 (2012), p.439.

Google Scholar

[3] A. Patsoura, Dimitris I., Kondarides, Xenophon, E. and Verykios: Catal. Today Vol. 124 (2007), p.94.

Google Scholar

[4] L. H. Lalasari, A. H. Yuwono, F. Firdiyono, L. Andriyah, Elfi, N., S. Harjanto and B. Suharno: Majalah Metalurgi Vol. 27, Nomor 3, (2012), p.251.

Google Scholar

[5] T.X. Liu, F. B. Li and X. Z. Li: J. Hazard. Mater. Vol. 152 (2008), p.347.

Google Scholar

[6] Seunghan Oh, Karla S. Brammer, K. S. Moon, J. M. Bae and S. Jin: Mater. Sci. Eng., C. Vol. 31 (2011), p.873.

Google Scholar

[7] Qiang Gao, Xiaomei Wu, Yueming Fan, Xiya Zhaou: Dyes Pigm. Vol. 95 (2012), p.534.

Google Scholar

[8] L. H. Kao, T. C. Hsu, K. K. Cheng: J. Colloid Interface Sci. Vol. 341 (2010), p.359.

Google Scholar

[9] I. Alessandri, L. Armelao, E. Bontempi, G. Bottaro, L.E. Depero, F. Poli, E. Tondello: Mater. Sci. Eng., C. Vol. 25 (2005), p.560.

DOI: 10.1016/j.msec.2005.07.006

Google Scholar

[10] J. Tokarsky, V. Matejka, L. Neuwirthova, J. Vontorova, K.M. Kutlakova, J. Kukutschova, P. Capkova: A Low-cost Photoactive Composite Quartz Sand/TiO2: Chem. Eng. J. Vol. 222 (2013), p.488.

Google Scholar

[11] Seishiro Ito, Shigeto Inoue, Hiromi Kawada, Masayoshi Hara, Mitsunobu Iwasaki, and Hiroaki Tada: J. Colloid Interface Sci. Vol. 216 (1999), p.59.

Google Scholar

[12] Liu Qing-ju, Zhou Mi, Liu Qiang, Zhang Jin and Zhung Zhong-qi: Trans. Nonferrous Met. Soc. China Vol. 16 (2006), p. S411.

Google Scholar

[13] Congxue Tian, Zhao Zhang, Jun Hou and Ni Luo: Mater. Letters Vol. 62 (2008), p.77.

Google Scholar

[14] L. H. Lalasari, R. Subagja, F. Firdiyono, A. H. Yuwono, S. Harjanto, B. Suharno: The 13th International Conference on QIR (Quality in Research), Yogyakarta 25 – 28 June (2013).

DOI: 10.4028/www.scientific.net/amr.789.522

Google Scholar

[15] B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Reading, Massachusetts, (1978).

Google Scholar

[16] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, (1998).

Google Scholar

[17] J.H. Zietsman and P.C. Pistorius: The Journal of The South African Institute of Mining and Metallurgy (December 2004), p.653.

Google Scholar

[18] W. Zhang, Z. Zhu and C. Y. Cheng: Hydrometallurgy Vo. 108 (2011), p.177.

Google Scholar

[19] Gabor Benko, Bjorn Skarman, R. Wallenberg, A. Hagfeldt, V. Sundstrom and A. P. Yartsev: J. Phys. Chem. B. Vol. 107 (2003), p.1370.

Google Scholar

[20] D.S. Seo, J. K. Lee and H. Kim: Journal of Crystal Growth Vol. 229 (2001), p.428.

Google Scholar

[21] A.H. Yuwono, Y. Zhang and J. Wang: Adv. Mater. Res. Vols. 415-417 (2012), p.715.

Google Scholar

[22] Ling-Jung Hsu, Li-Ting Lee, Chia-Chang Lin: Chem. Eng. J. Vol. 173 (2011), p.698.

Google Scholar