Evaluation from First Principles the Structural Stability of Mg Containing Different Amounts of Al Atoms under High Pressure

Article Preview

Abstract:

The structural stability and phase transition of magnesium (Mg) containing different amounts of Al under high pressure was studied by means of first-principles total energy calculations. The cohesive energy calculations showed that the hcp and bcc structures of Mg-4.17 at%Al and Mg-8.33 at%Al were of the strong structural stability. The enthalpy for hcp and bcc structures of Mg was dependent upon the Al content. With increasing Al content from 0 to 8.33 at%, the enthalpy for hcp and bcc structures increased monotonously. Based on the enthalpy differences of the hcp and bcc structures under different pressures, the phase transition pressure under which the hcpbcc structural phase transition may take place for pure Mg, Mg-4.17 at%Al and Mg-8.33 at%Al was 60 GPa, 70 GPa and 85 GPa, respectively, indicating that with the increasing Al content, the phase transition pressure became higher and the hcpbcc transition was more difficult.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama and K. Hodouchi. Corros. Sci. Vol. 66 (2013), p.203.

Google Scholar

[2] P. Chen, D.L. Li, J.X. Yi, L. Chen, B.Y. Tang, L.M. Peng and W.J. Ding. Solid State Sci. Vol. 11 (2009), p.2156.

Google Scholar

[3] B.Y. Tang, P. Chen, D.L. Li, J.X. Yi, L. Wen, L.M. Peng and W.J. Ding. J. Alloys Compd. Vol. 492 (2010) p.416.

Google Scholar

[4] H.X. Liu, Q. Xu, D.M. Xiong, B. Liu and C.L. Meng. Vacuum. Vol. 89 (2013) p.233.

Google Scholar

[5] T. Tang, S. Kim and M.F. Horstemeyer. Comput. Mater. Sci. Vol. 48 (2010) p.426.

Google Scholar

[6] D.W. Shin and C. Wolverton. Scripta Mater. Vol. 63 (2010) p.680.

Google Scholar

[7] J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su and X. Zhao. Scripta Mater. Vol. 59 (2008) p.63.

Google Scholar

[8] A.K. McMahan and J.A. Moriarty. Phys. Rev. B Vol. 27 (1983) p.3235.

Google Scholar

[9] F. Jona and P.M. Marcus. J. Phys.: Condens. Matter Vol. 15 (2003) p.7727.

Google Scholar

[10] R.M. Wentzcovitch and M.L. Cohen. Phys. Rev. B Vol. 37 (1998) p.5571.

Google Scholar

[11] Q.X. Liu, C.Z. Fan and R.J. Zhang. J. Appl. Phys. Vol. 105 (2009) 123505.

Google Scholar

[12] Q.X. Liu and R.J. Zhang. J. Alloys Compd. Vol. 508 (2010) p.616.

Google Scholar

[13] J.P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett. Vol. 77 (1996) p.3865.

Google Scholar

[14] D. Vanderbilt. Rhys. Rev. B Vol. 41 (1990) p.7892.

Google Scholar

[15] T.H. Fischer and J. Almlof. J. Phys. Chem. Vol. 96 (1992) p.9768.

Google Scholar

[16] S.M. Alay-e-Abbas, N. Sabir, Y. Saeed and A. Shaukat. J. Alloys Compd. Vol. 503 (2010) p.10.

Google Scholar

[17] S. Desgreniers and K. Lagarec. Phys. Rev. B Vol. 59 (1999) p.8467.

Google Scholar

[18] B. Amin, I. Ahmad, M. Maqbool, N. Ikram, Y. Saeed, A. Ahmad and S. Arif. J. Alloys Compd. Vol. 493 (2010) p.212.

Google Scholar

[19] K.T. Kashyap, C. Ramachandra, M. Sujatha and B. Chatterji. Bull. Mater. Sci. Vol. 23 (2000) p.39.

Google Scholar

[20] S. Ganeshan, S.L. Shang, Y. Wang, Z. -K. Liu. Acta Mater. Vol. 57 (2009) p.3876.

Google Scholar

[21] C. Wan, P.D. Han, L. Zhang, C.L. Zhang and B.S. Xu. Rare Metal Mat. and Eng., Vol. 40 (2011) p.590.

Google Scholar