Measuring Mass Transfer on Biodiesel Process by Means of Impedance Measurement

Article Preview

Abstract:

Transesterification is commonly used to produce biodiesel from methylester. In order to control the conversion process is useful to employ process monitoring, in particular monitoring of the mass transfer processes that limits the initial rates of transesterification. Monitoring of these initial stages of the reaction may allow for process optimization. Many methods have been identified to monitor reaction progress. This paper proposes a method to monitor the initial stages of the biodiesel production process using impedance measurement. The impedance measurements presented show the expected sigmoid curves that are associated with mass transfer (mixing) processes taking place during the early stages of the transesterification process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-472

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Falate, R., Nike,K., Ramos,P., Alternative technique for biodiesel quality control using an optical fiber period grating sensor, Quim. Nova, Vol. 30, No. 7, 1677-1680. (2007).

DOI: 10.1590/s0100-40422007000700034

Google Scholar

[2] Noureddini, H.; Zhu, D. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc., 74, 1457. (1997).

DOI: 10.1007/s11746-997-0254-2

Google Scholar

[3] Kai, T., Mataki, Y., Nakazato, T., Takanashi, H., Optimization of reaction conditions of two-step batch operation for biodiesel fuel production using KOH catalyst. Journal of Chemical Engineering of Japan, 43, 1, 90-94, 0021-9592, (2010).

DOI: 10.1252/jcej.09we026

Google Scholar

[4] Knothe, G., Rapid monitoring of transesterification and assessing biodiesel fuel quality by near infrared spectroscopy using a fiber optic probe, J. Am Oil Chem. Soc. 76 (7), 795-800, (2009).

DOI: 10.1007/s11746-999-0068-5

Google Scholar

[5] Ellis, N., Guan, F., Chen, T., Poon, C. Monitoring biodiesel production (transesterification) using in situ viscometer, Chem Eng Journal 138, 200-206, (2008).

DOI: 10.1016/j.cej.2007.06.034

Google Scholar

[6] M.G. Trevisan, Monitoramento de reacoes quimicas empregando spectroscopy no infravermelho (Monitoring of chemical reaction with infrared spectroscopy). Campinas, 147p. Tese (Quimica Analitica), (2009).

DOI: 10.47749/t/unicamp.2009.449434

Google Scholar

[7] De Boni, L.A.B., I.N. Lima da silva, Monitoring the transesterification reaction with laser spectroscopy, Fuel Processing Technology 92, 1001-1006, (2011).

DOI: 10.1016/j.fuproc.2010.12.022

Google Scholar

[8] Furukawa, S., Uehara, Y., Yamasaki, H., Variables affecting the reactivity of acid catalyzed transesterification of vegetable oil with methanol, Bioresource Technology, 101, 10, 3325-3332, 0960-8524, (2010).

DOI: 10.1016/j.biortech.2009.12.086

Google Scholar

[9] Boocock, D.G.B., Konar, S.K., Mao, V., Sidi, H., Fast one phase oil rich processes for the preparation of vegetable oil methylester, Biomass Bioenergy, 11, 43-50, (1996).

DOI: 10.1016/0961-9534(95)00111-5

Google Scholar

[10] Zhang, Y., Stanciuilescu, M., Ikura, M., Rapid transesterification of soybean oil with phase transfer catalyst, Applied Catalyst A-General, 366, 1, 176-183, 0926-860X, (2009).

DOI: 10.1016/j.apcata.2009.07.001

Google Scholar

[11] Mukhopadhyay, S. C., Novel planar electromaganetic sensors: modeling and performance evaluation, Sensors, 5, 546-579, (2005).

DOI: 10.3390/s5120546

Google Scholar

[12] Ataya, F., Dube, M.A., Ternan, M., Acid catalysed transesterification of canola oil to biodiesel under single and two phase reaction conditions, Energy & Fuels, 21, 4, 2450-2459, (2007).

DOI: 10.1021/ef0701440

Google Scholar

[13] Guan, G, Kusakabe,K., Sakurai,N., Moriyama,K., Transesterification of vegetable oil to biodiesel fuel using acid catalystin the presence of dimethyl ester, Fuel, 88, 81-86, (2009).

DOI: 10.1016/j.fuel.2008.07.021

Google Scholar

[14] Stamenkovic, O.S., Todorovic, Z.B., Lazic, M.L., Veljkovic, V.B., Skala, D. U, Kinetics of sunflower oil methanolysis at low temperatures. Bioresour. Technol. 99 (5), 1131-1140. (2008).

DOI: 10.1016/j.biortech.2006.09.024

Google Scholar

[15] Vicente, G., Martinez, M., Aracil, J., Integrated biodiesel production: a comparison of different homogeneous catalyst systems. Biores. Technol. 92, 297-305. (2004).

DOI: 10.1016/j.biortech.2003.08.014

Google Scholar

[16] Poljansek, I., Likozar, B., Influence of mass transfer and kinetics on biodiesel production process, Chapter 19, Mass Transfer in Multiphase Systems and its Application, InTech, (2011).

DOI: 10.5772/15715

Google Scholar

[17] Lifka, J., Ondruska, B., Influence of mass transfer on the production of biodiesel, Chemical Engineering & Technology, 27, 11, 1156-1159, 0930-7516, (2004).

DOI: 10.1002/ceat.200407033

Google Scholar

[18] Romano, S.D., Sorichetti, P.A., Dielectric spectroscopy in biodiesel production and characterization, Springer, London (2011).

Google Scholar

[19] Frascari, D., Zuccaro, M., Pinelli, D., Paglianti, A., Optimization of mechanical agitation and evaluation of the mass transfer resistance in the oil transesterification reaction for biodiesel production. Industrial & Engineering Chemistry Research, 7540-7549, (2009).

DOI: 10.1021/ie900283j

Google Scholar