ε-Uniform Convergence of the Hybrid Difference Scheme on the Shishkin Mesh for Singularly Perturbed Problems

Article Preview

Abstract:

In this paper, we discuss the hybrid difference scheme on the Shishkin mesh for the singularly perturbed problems in 2-D. The ε-uniform pointwise convergence is proved by the comparison principle and barrier functions. The experiments support the theoretical result.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-217

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J.H. Miller, R.E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, (1996).

Google Scholar

[2] H. -G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, Heidelberg, (2008).

DOI: 10.1007/978-3-662-03206-0

Google Scholar

[3] M. Stynes, H. -G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23 (1997) 361-374.

DOI: 10.1016/s0168-9274(96)00071-2

Google Scholar

[4] T. Linβ, An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem, J. Comput. Appl. Math. 110 (1999) 93-104.

DOI: 10.1016/s0377-0427(99)00198-3

Google Scholar

[5] T. Linβ, M. Stynes, A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems, Appl. Math. 31 (1999) 255-270.

DOI: 10.1016/s0168-9274(98)00136-6

Google Scholar

[6] S. Franz, F. Liu, H. -G. Roos, M. Stynes, A. Zhou, The combination technique for a two-dimensional convection-diffusion problem with exponential layers, Appl. Math. 54 (2009) 203-223.

DOI: 10.1007/s10492-009-0013-9

Google Scholar

[7] T. Linβ, M. Stynes, Numerical methods on Shishkin meshes for linear convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 190 (2001) 3527-3542.

DOI: 10.1016/s0045-7825(00)00271-1

Google Scholar