A Traffic Matrix Recovery Algorithm via Low-Dimension Nature in Smart Grid

Article Preview

Abstract:

In this literature, we explore the solution of network traffic recovery in smart grid. Taking account of dimensionality of network traffic in smart grid, we propose a novel reconstruction model via network tomography. In our algorithm, we use the low-dimension nature of traffic matrix and the greedy adaptive dictionary algorithm to convert the network tomography into the problem of sparse reconstruction at first. Then we solve network traffic by an iterative greedy algorithm. Simulation results indicate that proposed algorithm exhibits noticeably improvement in estimation error comparing with previous work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

593-597

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Fang, S. Misra, G. Xue, and D. Yang, Smart grid-the new and improved power grid: a survey, IEEE Communications Surveys and Tutorials vol. 14, pp.944-980, (2012).

DOI: 10.1109/surv.2011.101911.00087

Google Scholar

[2] D. Jiang, G. Hu. GARCH model-based large-scale IP traffic matrix estimation. IEEE Communications Letters. 2009, 13(1): 52-54.

DOI: 10.1109/lcomm.2008.081271

Google Scholar

[3] D. Jiang, Z. Xu, L. Nie, et al. An approximate approach to end-to-end traffic in communication networks, Chinese Journal of Electronics, Oct. 2012, 21(4): 705-710.

Google Scholar

[4] Y. Yan, Q. Yi, H. Sharif, and D. Tripper, A survey on smart grid communicaiton infrastructures: motivations, requirements and challenges, IEEE Communications Surveys & Tutorials, vol. 15. no. 1, 2012, 21(4): 705-710.

DOI: 10.1109/surv.2012.021312.00034

Google Scholar

[5] D. Jiang, Z. Xu, Z. Chen, et al. Joint time-frequency sparse estimation of large-scale network traffic, Computer Networks, Oct. 2011, 55(10): 3533-3547.

DOI: 10.1016/j.comnet.2011.06.027

Google Scholar

[6] D. Jiang, Z. Xu, H. Xu, et al. An approximation method of origin- destination flow traffic from link load counts, Computers and Electrical Engineering, Nov. 2011, 37(6): 1106-1121.

DOI: 10.1016/j.compeleceng.2011.06.009

Google Scholar

[7] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, Fast accurate computation of large-scale IP traffic matrices from link loads, ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 3, pp.206-207, (2003).

DOI: 10.1145/885651.781053

Google Scholar

[8] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci, M. Crovella, and C. Diot, Traffic matrices: balancing Nucci, M. Crovella, and C. Diot, , Traffic matrices: balancing Banff, Canada, June (2005).

DOI: 10.1145/1064212.1064259

Google Scholar

[9] H. Zang and A. Nucci, Traffic monitor deployment in IP networks, Computer Networks, vol. 53, no. 14, pp.2491-2501, (2009).

DOI: 10.1016/j.comnet.2009.05.004

Google Scholar

[10] G. Liang, N. Taft, and B. Yu, A fast lightweight approach to origin–destination IP traffic estimation using partial measurements, IEEE Transactions on Information Theory, vol. 52, no. 6, pp.2634-2648, (2006).

DOI: 10.1109/tit.2006.874412

Google Scholar

[11] T. Adelani and A. Alfa, Hybrid techniques for large-scale IP traffic matrix estimation, in Proc. ICC 2010, pp.1-6, (2010).

DOI: 10.1109/icc.2010.5501843

Google Scholar

[12] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, Spatio-temporal compressive sensing and Internet traffic matrices, in Proc. SIGCOMM 2009, pp.267-278, (2009).

DOI: 10.1145/1594977.1592600

Google Scholar

[13] M. Jafari and M. Plumbley, Fast dictionary learning for sparse representations of speech signals, IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 5, pp.1025-1031, (2011).

DOI: 10.1109/jstsp.2011.2157892

Google Scholar

[14] J. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Transactions on Information Theory, vol. 50, no. 10, pp.2231-2242, (2004).

DOI: 10.1109/tit.2004.834793

Google Scholar