Adaptive Approach to Make a Delayed Complex Network Attain an Inhomogeneous Equilibrium Point

Article Preview

Abstract:

The inhomogeneous equilibrium point of a delayed complex network is investigated. In this letter, a novel local adaptive approach is used to make the delayed network achieve an inhomogeneous equilibrium point, where the whole nodes are divided into several groups; the nodes in the same group achieve one equilibrium point. The coupling strength between nodes varies with the information of the related nodes. By constructing a Lyapunov function, a sufficient condition about the stability of the inhomogeneous equilibrium point is obtained. When the isolated node is chaotic Lorenz system, simulations verify the effectiveness of the strategy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

843-846

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A Arenas, A D Guilera, J Kurths, Y Moreno, C S Zhou, Physics reports, 469 (2008) 93.

Google Scholar

[2] X B Lu, B Z Qin, Synchronization in complex networks, Nova Publisher, (2011).

Google Scholar

[3] A. Pikovsky, M.R., J. Kurths, Synchronization. Cambridge, UK: Cambridge University Press, (2001).

Google Scholar

[4] G. V. Osipov, J. Kurths, C. Zhou, Synchronization in oscillatory networks. 2007, Berlin, Germany: Springer.

Google Scholar

[5] J. D. Cao, L. L. Li, Neural Networks, 22 (2009) 335.

Google Scholar

[6] J T Ariaratnam, S.H. Strogatz, Physics Review Letter, 86 (2001)4278.

Google Scholar

[7] D J Watts, S H Strogatz, Nature, 393 (1998) 440.

Google Scholar

[8] A L Barabasi, R Albert, Science, 286 (1999) 509.

Google Scholar

[9] S H Strogatz, Nature, 410 (2001)268.

Google Scholar

[10] X. F. Wang, G. R. Chen, Physica A, 338 (2004) 367.

Google Scholar

[11] X. Li, X. F. Wang, G. R. Chen, IEEE Transactions on Circuits and Systems-I, 51(10) (2004) (2074).

Google Scholar

[12] T. P. Chen, X. W. Liu , W. L. Lu, IEEE Transactions on Circuits and Systems-I, 54(6) (2007) 1317.

Google Scholar

[13] M. Yoshioka, Phys. Rev. E, 71 (2005) 061914.

Google Scholar

[14] P. Holme, M. Huss, H. Jeong,Bioinformatics, 19 (2003) 532.

Google Scholar

[15] O. Sporns, D. R. Chialvo, M. Kaiser, C. C. Hilgetag, Trends. Cogn. Sci. 8 (2004) 418.

Google Scholar

[16] X. B. Lu, X. F. Wang, J. Q. Fang, Physica D, 239 (2010) 341.

Google Scholar

[17] J. Kurths, C S Zhou, Physical Review Letters, 96 (2006) 164102.

Google Scholar

[18] T Nishikawa, A E Motter, Physical Review E, 73 (2006) 065106.

Google Scholar

[19] P D Lellis, M. D. Bernardo and F. Garofalo, Chaos, 18 (2008) 037110.

Google Scholar

[20] X. B. Lu, B. Z. Qin, Physics Letter A, 373 (2009) 3650.

Google Scholar