[1]
Q. Jia and A.C. Lua, Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption, J. Anal. Appl. Pyrolysis 83 (2008) 175–179.
DOI: 10.1016/j.jaap.2008.08.001
Google Scholar
[2]
Dominic Woolf , James E. Amonette , F. Alayne Street-Perrott , Johannes Lehmann & Stephen Joseph , Sustainable Biochar To Mitigate Global Climate Change, Nature Communications , (2010), DOI: 10. 1038/ncomms1053.
DOI: 10.1038/ncomms1053
Google Scholar
[3]
Amonette , J.E., An Introduction to Biochar with an Emphasis on its Properties and Potential for Climate Change Mitigation, PNW Biochar Initiative Meeting (2009), Pacific Northwest National Laboratory, Richland, USA.
Google Scholar
[4]
A. Demirbas, Effect of temperature on pyrolysis products from four nut shells, Journal of Analytical and Applied Pyrolysis, 76 (2006) 285-289.
DOI: 10.1016/j.jaap.2005.12.012
Google Scholar
[5]
K. Karhu, T. Mattila, I. Bergström, and K. Regina, Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study, Agriculture, Ecosystems & Environment, 140 (2011) 309-313.
DOI: 10.1016/j.agee.2010.12.005
Google Scholar
[6]
A. C. Lua, F. Y. Lau, and J. Guo, Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons, Journal of Analytical and Applied Pyrolysis, 76 (2006) 96-102.
DOI: 10.1016/j.jaap.2005.08.001
Google Scholar
[7]
S. H. Beis, Ö. Onay, and Ö. M. Koçkar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions, Renewable Energy, 26 (2002) 21-32.
DOI: 10.1016/s0960-1481(01)00109-4
Google Scholar
[8]
W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Industrial Crops and Products, 28 (2008).
DOI: 10.1016/j.indcrop.2008.02.012
Google Scholar
[9]
A. Chouchene, M. Jeguirim, B. Khiari, F. Zagrouba, and G. Trouvé, Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration, Resources, Conservation and Recycling, 54 (2010) 271-277.
DOI: 10.1016/j.resconrec.2009.04.010
Google Scholar
[10]
Isa, K.M., et al., Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Industrial Crops and Products, 33(2) (2011) 481-487.
DOI: 10.1016/j.indcrop.2010.10.024
Google Scholar
[11]
Katyal, S., K. Thambimuthu, and M. Valix, Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renewable Energy, 2003. 28(5) (2003) 713-725.
DOI: 10.1016/s0960-1481(02)00112-x
Google Scholar
[12]
Hossain, M.K., et al., Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1) (2011) 223-228.
DOI: 10.1016/j.jenvman.2010.09.008
Google Scholar
[13]
Demirbas, A., Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2) (2004) 243-248.
DOI: 10.1016/j.jaap.2004.07.003
Google Scholar
[14]
Williams, P.T. and S. Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, 7(3) (1996) 233-250.
DOI: 10.1016/0960-1481(96)00006-7
Google Scholar
[15]
Chouchene, A., et al., Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resources, Conservation and Recycling, 54(5) (2010) 271-277.
DOI: 10.1016/j.resconrec.2009.04.010
Google Scholar