Influnce of Grain Size on Dynamic Recrystallization of AZ31 Magnesium Alloy Rolling Sheet

Article Preview

Abstract:

Microstructure evolution characteristics and the influence of the intial grain size on the dynamic recrystallization of AZ31 were investigated by rolling at deformation temperature of 280 °C, 30% reduction and strain rate of 5.6s-1. The results indicate that under the present deformation condition, when the grain size is 6.2μm the dynamic recrystallization does not occur , twinning dynamic recrystallization (TDRX) occurs when the original grain size are of 7.9μm and 12.7μm, when the original grain size is 21.1μm rotating dynamic recrystallization (RDRX) occurs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-222

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhenhua Chen. Magnesium alloy [M]. Beijing: Chemical Industry Press, 2004: 202−241.

Google Scholar

[2] Zhenhua Chen. Wrought magnesium alloy [M]. Beijing: Chemical Industry Press, 2004: 1−3.

Google Scholar

[3] T. Mukai,Y. Masashi,Y. Higashi, Mater. Trans. JIM 42 (2001) 2652–2655.

Google Scholar

[4] S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Scripta Mater. 50(2004)377–381.

Google Scholar

[5] H. -K. Kim, Mater. Sci. Eng. A515 (2009) 66–70.

Google Scholar

[6] Chuming Liu, Zijuan Liu, Xiurong Zhu et al. The Chinese Journal of Nonferrous Metals [J], 2006, 16(1): 1.

Google Scholar

[7] Kun Yu, Wenxian Li. Scripta Mater [J], 2003, 48(9): 1319.

Google Scholar

[8] Galiyev A, Kaibyshev R, Cottstein G. Acta Mater[J], 2001, 49(7): 1199.

Google Scholar

[9] Yin D L, Wang K F, Han W B. [J]. Materials Science and Engineering,2005 (A392): 320-325.

Google Scholar

[10] Barnett M R. [J]. Material Science Forum, 2003, 419-422: 503.

Google Scholar

[11] Liu Y. Transient plasticity and microstructural evolution of a comercial AZ31 magnesium alloy at elevated temperatures [D]. Detroit, Michigan: Wayne State University, 2003, 111-124.

Google Scholar

[12] Perez-Prado MT, del Valle J A, Contreras J M, et al. [J]. Scripta Materialia , 2004, 50: 661~665.

Google Scholar

[13] Barnett M R. [J]. Material Science Forum,2003,419–422:503.

Google Scholar

[14] Koike J. Metall Mater Transe [J], 2005, A36 (7): 1689.

Google Scholar

[15] Wonsiewicz B C, Backofen W A. Trans Metall Soc [J], 1967, A239: 1422.

Google Scholar

[16] Yoo M H. Metall Trans [J], 1981, A12: 409.

Google Scholar

[17] Barnett M R, Keshavara Z, Beer A G, et al. Acta Materialia, 2004, 52: 5093.

Google Scholar

[18] Perex-Prado M T, Valle J A, Ruano O A. Scripta Mater, 2004, 50: 667.

Google Scholar

[19] Caceres C H, Sumitomo T, Veidt M. Acta Materialia, 2003, 51: 6211.

Google Scholar