An Optical Centrifugal-and-Pneumatic Controlled Microfluidic System for Sensing Real-Time Biochemical Reactions

Article Preview

Abstract:

An optical real-time pneumatic-and-centrifugal controlled microfluidic detection system for dynamic information acquisition is developed based on the quasi-stationary imaging technique. The programmable airflow applied on the centrifugal microstructures for improving efficiency in samples separation. The dynamic characteristic of a loaded disc is stable with vibrating under 0.3 mm at a speed of 1000 rpm by applying 3 bar-induced pneumatic forces on a 12 cm-diameter disc. A conversion model for converting RGB images into CIE L*a*b* color space have been used to enhance the inspection images. A linear relationship between threshold frequency and sample density is 167 rpm/g/cm3. The pressures between 0.1 and 0.5 bars are applied to bias microflow from 15° to 80°. The conduction angles between 30° and 90° have better pneumatic control. The control efficiency observed up to 89% and the largest microflow biased angle reached 80°. The pneumatic force dominates microfluidic behaviors when the force is greater than 10 times the centrifugal force. A sequential of triple-reservoir tests has been verified by analyzing enhanced optical images in separation using arranged acid-base indicators for pH reactions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1733-1737

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.J. Lee, M.J. Madou, K.W. Koelling, S. Daunert, S. Lai, C.G. Koh, Y. . Juang, Y. Lu and L. Yu: Biomed. Microdevices Vol. 3 (2001), p.339.

DOI: 10.1023/a:1012469017354

Google Scholar

[2] S.J. Lee and S.Y. Lee: Appl. Microbiol. Biotechnol. Vol. 64 (2004), p.289.

Google Scholar

[3] E.A. Moschou, A.D. Nicholson, G. Jia, J.V. Zoval, M.J. Madou, L.G. Bachas and S. Daunert: Anal. Bioanal. Chem. Vol. 385 (2006). P. 596.

DOI: 10.1007/s00216-006-0436-z

Google Scholar

[4] C.S. Lin, C.H. Lin, C.Y. Wu, H.Z. Shieh and C.C. Lay: Opt. Laser Technol. Vol. 39 (2007), p.202.

Google Scholar

[5] D.C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard and G.J. Kellogg: Anal. Chem. Vol. 71 (1999), p.4669.

Google Scholar

[6] T.S. Leu and P.Y. Chang: Sens. Actuator A-Phys. Vol. 115 (2004), p.508.

Google Scholar

[7] J.M. Chen, P.C. Huang and M.G. Lin: Microfluid. Nanofluid. Vol. 4 (2008), p.427.

Google Scholar

[8] D. Mark, T. Metz, S. Haeberle, S. Lutz, J. Ducrée, R. Zengerleab and F.V. Stettenab: Lab Chip Vol. 9 (2009), p.3599.

Google Scholar

[9] M.C.R. Kong and E.D. Salin: Anal. Chem. 83 (2011), p.1148.

Google Scholar

[10] R. Gorkin, L. Clime, M. Madou and H. Kido: Microfluid. Nanofluid. Vol. 9 (2010), p.541.

DOI: 10.1007/s10404-010-0571-x

Google Scholar

[11] H.C. Chang, C.F. Tsou, C.C. Lai and G.H. Wun: Meas. Sci. Technol. Vol. 19 (2008), p.075501.

Google Scholar

[12] K. Leon, D. Mery, F. Pedreschi and J. Leon: Food Res. Int. 39 (2006), p.1084.

Google Scholar