[1]
Xu Y, Zhou W, Fang J, Sun W. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling. Phys. Lett. A 374 (2010) 1673-1677.
DOI: 10.1016/j.physleta.2010.02.002
Google Scholar
[2]
Lü J, Yu X, Chen G. Chaos synchronization of general complex dynamical networks. Physica A 334 (2004) 281-302.
DOI: 10.1016/j.physa.2003.10.052
Google Scholar
[3]
Zhou J, Li X, Liu Z: Global synchronization in general complex delayed dynamical networks and its applications. Physica A 385 (2007) 729-742.
DOI: 10.1016/j.physa.2007.07.006
Google Scholar
[4]
Xu Y, Zhou W, Fang J. Topology identification of the modified complex dynamical network with non-delayed and delayed coupling, Nonlinear Dyn. 68 (2012) 195-205.
DOI: 10.1007/s11071-011-0217-x
Google Scholar
[5]
Yu W, Cao J. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks. Chaos 16 (2006) 023119.
DOI: 10.1063/1.2204747
Google Scholar
[6]
Yu W, Chen G, Cao J, Lü J, Parlitz U. Parameter identification of dynamical systems from time series. Phys. Rev. E 75 (2007) 067201.
DOI: 10.1103/physreve.75.067201
Google Scholar
[7]
Li C, Sun W, Kurths J. Synchronization between two coupled complex networks. Phys. Rev. E 76 (2007) 046204.
Google Scholar
[8]
Tang H, Chen L, Lu J, Tse C. Adaptive synchronization between two complex networks with nonidentical topological structures. Physica A 387 (2008) 5623-5630.
DOI: 10.1016/j.physa.2008.05.047
Google Scholar
[9]
Xu Y, Zhou W, Fang J, Lu H. Structure identification and adaptive synchronization of uncertain general complex dynamical networks. Phys. Lett. A 374 (2009) 272-278.
DOI: 10.1016/j.physleta.2009.10.079
Google Scholar
[10]
Lü J, Chen G. A new chaotic attractor coined. Int. J. Bifur. Chaos 12 (2002) 659-661.
DOI: 10.1142/s0218127402004620
Google Scholar
[11]
Lu W, Chen T, Chen G. Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221 (2006) 118-134.
DOI: 10.1016/j.physd.2006.07.020
Google Scholar