[1]
Song Eun-Jung. Three-dimensional midcourse guidance using neural networks for interception of ballistic targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (2): 404-414.
DOI: 10.1109/taes.2002.1008975
Google Scholar
[2]
Hull, David G. Missile sizing for ascent-phase intercept[J]. Journal of Spacecraft and Rockets, 1995, 32(3): 445-449.
DOI: 10.2514/3.26635
Google Scholar
[3]
Shinar, J. Nonorthodox guidance law development approach for intercepting maneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 658-666.
DOI: 10.2514/2.4960
Google Scholar
[4]
Yeh, Fu-Kuang. Design of optimal midcourse guidance sliding-mode control for missiles with TVC[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 824-837.
DOI: 10.1109/taes.2003.1238739
Google Scholar
[5]
Shtessel, Yuri B. Smooth second-order sliding modes: Missile guidance application[J]. Automatica, 2007, 43(8): 1470-1476.
DOI: 10.1016/j.automatica.2007.01.008
Google Scholar
[6]
Newman B. Spacecraft intercept guidance using zero effort miss steering[R]. AIAA 93-3890,(1993).
DOI: 10.2514/6.1993-3890
Google Scholar
[7]
Newman B. Robust conventional based midcourse guidance for spacecragt intercept[C]. The Amarican Control Confence,Seattle,Washington,June (1995).
Google Scholar
[8]
Newman B. Strategic intercept midcourse guidance using modified zero effort miss steering[J]. Journal of Guidance,Control,and Dynamics,1996,19(1): 107-112.
DOI: 10.2514/3.21586
Google Scholar
[9]
LIU Shi-yong. Research on Midcourse Guidance for Fue-Exhaustion-Shutoff exo-Atmospheric Interceptor [J]. Yuhang Xuebao/Journal of Astronautics, v 26, n 2, pp.156-163.
Google Scholar
[10]
Zheng, Li-Wei; Jing, Wu-Xing; Zhang. Zero effort miss formulation for longer range targeting, Source: Yuhang Xuebao/Journal of Astronautics, v 28, n 4, pp.865-869, July (2007).
Google Scholar
[11]
Chen, Feng; Xiao, Yelun; Chen. Guidance based on zero effort miss for super-range exoatmospheric intercept: Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, v 30, n 9, pp.1583-1589, September 2009 Language: Chinese.
Google Scholar
[12]
Li, Yun-Qian; Qi, Nai-Ming. A zero-effort miss distance-based guidance law for endoatmoshperic interceptor, Yuhang Xuebao/Journal of Astronautics, v 31, n 7, pp.1768-1774, July (2010).
Google Scholar
[13]
Zhu, Shengying, Guidance law of impacting small bodies using Zero-Effort-Miss(ZEM) steering. 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2008, 2008, 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA (2008).
DOI: 10.1109/isscaa.2008.4776346
Google Scholar
[14]
Tang shan-tong. Summary of the vehicle trajectory optimazation and guidance law[J]. MODERN DEFENCE TECHNOLOGY.
Google Scholar
[15]
Li Luo-gang. Optimal orbit design of returning from moon[J]. Journal of Harbin institute of technology.
Google Scholar
[16]
HE Xing-suo. Optimal Design of Direct Soft-Landing Trajectory of Lunar Prospector[J]. Yuhang Xuebao/Journal of Astronautics.
Google Scholar
[17]
LIANG Xin-gang. Applying Nonlinear Programming to Solve Nonplanar Optimal Orbital Transfer Problem[J]. Yuhang Xuebao/Journal of Astronautics.
Google Scholar
[18]
ZHOU Jing-Yang, ZHOU Di. Precise Modeling and Optimal Orbit Design of Lunar Modules Soft Landing[J]. Yuhang Xuebao/Journal of Astronautics.
Google Scholar
[19]
LIANG Xin-gang. Applying Nonlinear Programming to Solve Nonplanar Optimal Orbital Transfer Problem[J]. Yuhang Xuebao/Journal of Astronautics.
Google Scholar
[20]
LIU Tao, HE Zhao-wei. Continuous-Thrust Orbit Maneuver Optimization Using Modified Robust Algorithm[J]. Yuhang Xuebao/Journal of Astronautics.
Google Scholar
[21]
JING Wu-xing, Li Luo-gang. Calculating Flight Program Data and Launch-Time Window in Missile Interception[J]. Systems Engineering and Electronics.
Google Scholar