[1]
Anselin L. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers, (1988).
Google Scholar
[2]
Anselin L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity [J]. Geographical Analysis, 20( 1): 1-17. (1988).
DOI: 10.1111/j.1538-4632.1988.tb00159.x
Google Scholar
[3]
Anselin L, and Florax J.G.M., Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results, in L. Anselin, J.G.M. Florax (eds. ) New Directions in Spatial Econometrics, Springer, 21-74. (1995).
DOI: 10.1007/978-3-642-79877-1_2
Google Scholar
[4]
Anselin L, and Griffith D. A Do spatial effects really matter in regression analysis. Papers in Regional Science 65: 11–34, (1988).
DOI: 10.1111/j.1435-5597.1988.tb01155.x
Google Scholar
[5]
Anselin L., and Kelejian H. H, Testing for Spatial Autocorrelation in the Presence of Endogenous Regressors, International Regional Science Review, 20: 153–182. (1997).
DOI: 10.1177/016001769702000109
Google Scholar
[6]
Anselin L., and Morano R, Properties of Tests for Spatial Error Components. . (2002).
Google Scholar
[7]
Anselin L. and Rey S, Properties of Tests for Spatial Dependence in Linear Regression Models, Geographical Analysis, 23: 112-131. (1991).
DOI: 10.1111/j.1538-4632.1991.tb00228.x
Google Scholar
[8]
Anselin L, Bera A.K., Florax R., and Yoon M. J, Simple diagnostic tests for spatial dependence, Regional Science and Urban Economics, 26: 77-104. (1996).
DOI: 10.1016/0166-0462(95)02111-6
Google Scholar
[9]
Cliff A, and Ord J. K, Testing for spatial autocorrelation among regression residuals, Geographical Analysis, 4: 267–284, (1972).
DOI: 10.1111/j.1538-4632.1972.tb00475.x
Google Scholar
[11]
Anselin L. and Rey S. Properties of Tests for Spatial Dependence in Linear Regression Models [J]. Geographical Analysis, 23: 112-131. (1991).
DOI: 10.1111/j.1538-4632.1991.tb00228.x
Google Scholar
[12]
Burridge P , On the Cliff-Ord Test for Spatial Correlation, Journal of the Royal Statistical Society. Series B (Methodological), 42(1): 107-108 , (1980).
DOI: 10.1111/j.2517-6161.1980.tb01108.x
Google Scholar
[13]
Bera A., Yoon M. Specification testing with locally misspecified alternatives [J]. Econometric Theory, 9(4): 649–658. (1993).
DOI: 10.1017/s0266466600008021
Google Scholar
[14]
Bera A., Sosa-Escudero W., Yoon M. Tests for the error component model in the presence of local misspecification [J]. Journal of Econometrics, 101, 1–23. (2001).
DOI: 10.1016/s0304-4076(00)00071-3
Google Scholar
[15]
Waldhor T., The Spatial Autocorrelation Coefficient Moran's I under Heteroscedasticity, Statistics in Medicine, 15: 887-892. (1996).
DOI: 10.1002/(sici)1097-0258(19960415)15:7/9<887::aid-sim257>3.0.co;2-e
Google Scholar
[16]
Baltagi B. H, Song S. H, Koh W. Testing panel data regression models with spatial error correlation [J]. Journal of Econometrics, 117(1): 123-150. (2003).
DOI: 10.1016/s0304-4076(03)00120-9
Google Scholar
[17]
Baltagi B. H, Song S. H, Jung B. C, etal. Testing for serial correlation, spatial autocorrelation and random effects using panel data [J]. Journal of Econometrics, 40(1): 5–51. (2007).
DOI: 10.1016/j.jeconom.2006.09.001
Google Scholar
[18]
Kelejian HH, Robinson DP A suggested test for spatial autocorrelation and/or heteroscedasticity and corresponding Monte Carlo results. Regional Science and Urban Economics 28: 389–417. (1998).
DOI: 10.1016/s0166-0462(98)00007-6
Google Scholar
[19]
He M. And Lin K.P. Testing panel data models with spatially lagged dependent variable and spatially correlated error components,Department of Economics, Portland State University, Spatial Econometrics Association Vth World Conference, (2011).
DOI: 10.3390/econometrics3040761
Google Scholar