Properties of Process Gas Combustion Products

Article Preview

Abstract:

The study deals with the issue of combustion of process gas that resulted from the pyrolyticly processed varied organic materials. The study describes combustion properties of the gas and the properties of the combustion product considering kinds of the entry materials. The selected materials (coal, rubber, or biomass) were pyrolysed at the temperature of 650°C in the experimental system having the maximal heat output of 200 kW. It was the system with the continual intake of entry materials the flow of which could reach the maximum of about 150 kg.h-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.P. Wampler, Applied Pyrolysis Handbook. CRC Press, 304 p. ISBN 978-1574446418, (2006).

Google Scholar

[2] M. Pástor, M. Budayová, A. Varga, T. Suchý, G. Fedorko, Analysis of alternativ fuel-biomass gasifying at fluid reactor. In Modern tendencies in the development of energy mining proceedings: 2nd International Symposium Mining energetic, 8 (2008).

Google Scholar

[3] P. Basu, Biomass Gasification & Pyrolysis: Practical Design and Theory. 1st edition. Academic Press, 376 p. ISBN 978-0-12-374988-8, (2010).

Google Scholar

[4] A. Quek, R. Balasubramanian, Liquefaction of waste tires by pyrolysis for oil and chemicals. Journal of Analytical and Applied Pyrolysis, Vol. 101 (2013), pp.1-16.

DOI: 10.1016/j.jaap.2013.02.016

Google Scholar

[5] G. Mazloom, F. Farhadi, Kinetic modelling of pyrolysis of scrap tires. Journal of Analytical and Applied Pyrolysis, Vol. 84, 2 (2009), pp.157-164.

DOI: 10.1016/j.jaap.2009.01.006

Google Scholar

[6] S. Zuo, Z. Xiao, J. Yang, Evolution of gaseous products from biomass pyrolysis in the presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis, Vol. 95 (2012), pp.236-240.

DOI: 10.1016/j.jaap.2012.02.011

Google Scholar

[7] J.V. Christiansena, A. Feldthusb, L. Carlsen, Flash pyrolysis of coals. Temperature-dependent product distribution. Journal of Analytical and Applied Pyrolysis, Vol. 32 (1995), pp.51-63.

DOI: 10.1016/0165-2370(94)00826-m

Google Scholar

[8] M. Staf, P. Burian, Complex experimental approach to the research of biomass pyrolysis. In Energie z biomasy IV, VUT Brno, ISBN 80-214-3067-2, (2005).

Google Scholar

[9] Z. Al-Hamare, S. Diezinger, P. Taludkar, F. Von Issendorff, D. Trimis, Combustion Of Low Calorific Gases From Landfills And Waste Pyrolysis Using Porous Medium Burner Technology. Process Safety and Environmental Protection, Vo. 84, 4 (2006).

DOI: 10.1205/psep.05167

Google Scholar

[10] L. Kysela, Gas. VSB - Technical University of Ostrava, 73 p. (2008).

Google Scholar

[11] A. V. Yatsun, P. N. Konovalov, N. P. Konovalov, Gaseous Products of Microwave Pyrolysis of Scrap Tires. Solid Fuel Chemistry, Vol. 42, 3 (2008), pp.187-191.

DOI: 10.3103/s0361521908030130

Google Scholar

[12] E. Aylo´n, R. Murillo, A. Ferna´ndez-Colino, A. Aranda, T. Garci´a, M. S. Calle´n, A.M. Mistral, Emissions from the combustion of gas-phase products at tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 79(2007).

DOI: 10.1016/j.jaap.2006.10.009

Google Scholar

[13] J. Fík, Combustion of Gas and Gas Burners, GAS s. r. o., 232 p. ISBN80-86176-01-0, (1998).

Google Scholar

[14] V.A. Michelson, O normalnoj skorosti rasprostranenija plameni v gremučich gazovych směsach, Izd. MGU, 1890.

Google Scholar

[15] Gas in Heating, Společnost pro techniku prostředí, Prague, 105 p. (1994).

Google Scholar

[16] C. Breton, R. Eberhard, Handbuch der gasanvendungs technik, R. Oldenburg Verlag, (1987).

Google Scholar

[17] P. Noskievic, Coal combustion. 2. ed. VSB - TU Ostrava, 66 p. ISBN 80-248-0204-X. (2005).

Google Scholar