[1]
Pajares G, Mauel J C. A wavelet-based image fusion tutorial. Pattern Recognition, Vol. 37, no. 9, 1855-1872. (2004).
DOI: 10.1016/j.patcog.2004.03.010
Google Scholar
[2]
MinhN. Do, sitieti, holly. The Finite Ridgelet Transform for Image Representation. IEEE Transactionson Image Proeessing, Vol. 12, No. l, 16-28. (2003).
DOI: 10.1109/tip.2002.806252
Google Scholar
[3]
RaminEslami, HayderRadha.Wavelet-based contourlet transform and It'Sapplication to image coding. IEEE Intenrational Conferenceon Image Processing.Singapore, 3189-3192. (2004).
Google Scholar
[4]
Christophe Simon, Frederique Bicking and Thierry Simon. Estimation of depth on thick edges from sharp and blurred images. IEEE Instrumentation and Measurement Technology Conference, Anchorage. Vol. 1, 323-328. (2002).
DOI: 10.1109/imtc.2002.1006861
Google Scholar
[5]
Donoho.D. L.De-noising by soft-thresholding. IEEE Transon IT, Vol. 41, no. 3, 613-627. (1995).
Google Scholar
[6]
Do M N, VetterliM.Contourlets: A directional multiresolution image representation. International Conferenceon Image Processing, Vol. 1, 357-360. (2002).
Google Scholar
[7]
Do M N, VetterliM.The contourlet transform: An eifcient directionl multiresolution image representation. IEEE Trans Image Process, Vol. 14, no. 12, 2091-2106 (2005).
DOI: 10.1109/tip.2005.859376
Google Scholar
[8]
DuncanD Y, DoM N.Directionl multiseale statistical modeling ofimages using the contourlet transform. IEEE Trans Image Porcocess, Vol. 15, no. 6, 1610-1620. (2006).
Google Scholar
[9]
Do M N, Vetterli M.Pyramidal directionla filter banks and curvelets. Proceedings of International Conference on Image Processing, 158-161. (2001).
Google Scholar
[10]
A L Cunha, J Zhou, M N Do. The nonsubsampled contourlet transform: Theory, design and application. IEEE Transactions on Image Processing, Vol. 15, no. 10, 3089-3101. (2006).
DOI: 10.1109/tip.2006.877507
Google Scholar
[11]
ChenGY, BuiTD, KrzyzakA.Multi-wavelets image denoising using neighboring coefficients. IEEE Trans on Image Proeessing Letters, Vol. 10, no. 7, 21l-214. (2003).
Google Scholar
[12]
ChangSG, YuB, VetterliM Adaptive wavelet thresholding for image denoising and compression. IEEE Trans.on Image Processing, Vol. 9, no. 9, 1532-1546. (2000).
DOI: 10.1109/83.862633
Google Scholar
[13]
G. Piella. New quality measures for image fusion. Proceedings of the 7th International Conference on Information Fusion (Fusion 2004), International Society of Information Fusion (ISIF), Stockholm, Sweden, Vol. 6, 542-546. (2004).
DOI: 10.1109/icif.2005.1591817
Google Scholar