An Improved Particle Swarm Optimization Algorithm

Article Preview

Abstract:

Particle swarm optimization (PSO) algorithm has the ability of global optimization , but it often suffers from premature convergence problem, especially in high-dimensional multimodal functions. In order to overcome the premature property and improve the global optimization performance of PSO algorithm, this paper proposes an improved particle swarm optimization algorithm , called IPSO. The simulation results of eight unimodal/multimodal benchmark functions demonstrate that IPSO is superior in enhancing the global convergence performance and avoiding the premature convergence problem to SPSO no matter on unimodal or multimodal high-dimensional (100 real-valued variables) functions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1328-1335

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kennedy J, Eberhart R, Particle swarm optimization, Neural Networks, 1995. Proceedings, IEEE International Conference on. IEEE, 4 (1995): 1942-(1948).

Google Scholar

[2] Eberhart R, Kennedy J, A new optimizer using particle swarm theory, Micro Machine and Human Science, 1995. MHS'95, Proceedings of the Sixth International Symposium on. IEEE, 1995: 39-43.

DOI: 10.1109/mhs.1995.494215

Google Scholar

[3] Hendtlass T, Preserving diversity in particle swarm optimization, Developments in Applied Artificial Intelligence. Springer Berlin Heidelberg, 2003: 31-40.

DOI: 10.1007/3-540-45034-3_4

Google Scholar

[4] Parsopoulos K E, Vrahatis M N, Recent approaches to global optimization problems through particle swarm optimization, Natural computing, 1(2-3), 2002: 235-306.

Google Scholar

[5] Fan H, A New Combined Particle Swarm Optimization Algorithm Based Golden Section Strategy, Advanced Materials Research, 308 (2011): 1099-1105.

DOI: 10.4028/www.scientific.net/amr.308-310.1099

Google Scholar

[6] Huang Z X, Yu Y H, Huang D C, Quantum behaved particle swarm algorithm with self-adapting adjustment of inertia weight, Journal of Shanghai Jiaotong University, 46(2), 2012: 228-232.

Google Scholar

[7] Zhang J L, Dai D W, A Particle Swarm Optimization Algorithm Based on the Pattern Search Method, Advanced Materials Research, 532 (2012): 1664-1669.

DOI: 10.4028/www.scientific.net/amr.532-533.1664

Google Scholar

[8] Lovbjerg M, Rasmussen T K, Krink T, Hybrid particle swarm optimiser with breeding and subpopulations, Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001 (2001): 469-476.

Google Scholar

[9] Al-kazemi B, Mohan C K, Multi-phase generalization of the particle swarm optimization algorithm, Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on. IEEE, 1 (2002): 489-494.

DOI: 10.1109/cec.2002.1006283

Google Scholar

[10] Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, Proceedings of the IEEE Congresson Evolutionary Computation, 1998[C]. NJ: Piscataway, 1998: 69-73.

Google Scholar

[11] Norouzzadeh M S, Ahmadzadeh M R, Palhang M, Plowing PSO: A novel approach to effectively initializing particle swarm optimization, Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on. IEEE, 1 (2010).

DOI: 10.1109/iccsit.2010.5565032

Google Scholar

[12] Shi Y, Eberhart R C, Parameter selection in particle swarm optimization, Evolutionary Programming VII. Springer Berlin Heidelberg, 1998: 591-600.

DOI: 10.1007/bfb0040810

Google Scholar

[13] del Valle Y, Venayagamoorthy G K, Mohagheghi S, et al, Particle swarm optimization: basic concepts, variants and applications in power systems, Evolutionary Computation, IEEE Transactions on, 12(2), 2008: 171-195.

DOI: 10.1109/tevc.2007.896686

Google Scholar

[14] Jiao B, Lian Z, Gu X, A dynamic inertia weight particle swarm optimization algorithm, Chaos, Solitons & Fractals, 37(3), 2008: 698-705.

DOI: 10.1016/j.chaos.2006.09.063

Google Scholar

[15] Ratnaweera A, Halgamuge S K, Watson H C, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, Evolutionary Computation, IEEE Transactions on, 8(3), 2004: 240-255.

DOI: 10.1109/tevc.2004.826071

Google Scholar

[16] Zhao H, Yu J L, Tahmasebi A, et al, An Improved Particle Swarm Optimization Algorithm with Invasive Weed, Advanced Materials Research, 621 (2013): 356-359.

DOI: 10.4028/www.scientific.net/amr.621.356

Google Scholar