[1]
Kennedy J, Eberhart R, Particle swarm optimization, Neural Networks, 1995. Proceedings, IEEE International Conference on. IEEE, 4 (1995): 1942-(1948).
Google Scholar
[2]
Eberhart R, Kennedy J, A new optimizer using particle swarm theory, Micro Machine and Human Science, 1995. MHS'95, Proceedings of the Sixth International Symposium on. IEEE, 1995: 39-43.
DOI: 10.1109/mhs.1995.494215
Google Scholar
[3]
Hendtlass T, Preserving diversity in particle swarm optimization, Developments in Applied Artificial Intelligence. Springer Berlin Heidelberg, 2003: 31-40.
DOI: 10.1007/3-540-45034-3_4
Google Scholar
[4]
Parsopoulos K E, Vrahatis M N, Recent approaches to global optimization problems through particle swarm optimization, Natural computing, 1(2-3), 2002: 235-306.
Google Scholar
[5]
Fan H, A New Combined Particle Swarm Optimization Algorithm Based Golden Section Strategy, Advanced Materials Research, 308 (2011): 1099-1105.
DOI: 10.4028/www.scientific.net/amr.308-310.1099
Google Scholar
[6]
Huang Z X, Yu Y H, Huang D C, Quantum behaved particle swarm algorithm with self-adapting adjustment of inertia weight, Journal of Shanghai Jiaotong University, 46(2), 2012: 228-232.
Google Scholar
[7]
Zhang J L, Dai D W, A Particle Swarm Optimization Algorithm Based on the Pattern Search Method, Advanced Materials Research, 532 (2012): 1664-1669.
DOI: 10.4028/www.scientific.net/amr.532-533.1664
Google Scholar
[8]
Lovbjerg M, Rasmussen T K, Krink T, Hybrid particle swarm optimiser with breeding and subpopulations, Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001 (2001): 469-476.
Google Scholar
[9]
Al-kazemi B, Mohan C K, Multi-phase generalization of the particle swarm optimization algorithm, Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on. IEEE, 1 (2002): 489-494.
DOI: 10.1109/cec.2002.1006283
Google Scholar
[10]
Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, Proceedings of the IEEE Congresson Evolutionary Computation, 1998[C]. NJ: Piscataway, 1998: 69-73.
Google Scholar
[11]
Norouzzadeh M S, Ahmadzadeh M R, Palhang M, Plowing PSO: A novel approach to effectively initializing particle swarm optimization, Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on. IEEE, 1 (2010).
DOI: 10.1109/iccsit.2010.5565032
Google Scholar
[12]
Shi Y, Eberhart R C, Parameter selection in particle swarm optimization, Evolutionary Programming VII. Springer Berlin Heidelberg, 1998: 591-600.
DOI: 10.1007/bfb0040810
Google Scholar
[13]
del Valle Y, Venayagamoorthy G K, Mohagheghi S, et al, Particle swarm optimization: basic concepts, variants and applications in power systems, Evolutionary Computation, IEEE Transactions on, 12(2), 2008: 171-195.
DOI: 10.1109/tevc.2007.896686
Google Scholar
[14]
Jiao B, Lian Z, Gu X, A dynamic inertia weight particle swarm optimization algorithm, Chaos, Solitons & Fractals, 37(3), 2008: 698-705.
DOI: 10.1016/j.chaos.2006.09.063
Google Scholar
[15]
Ratnaweera A, Halgamuge S K, Watson H C, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, Evolutionary Computation, IEEE Transactions on, 8(3), 2004: 240-255.
DOI: 10.1109/tevc.2004.826071
Google Scholar
[16]
Zhao H, Yu J L, Tahmasebi A, et al, An Improved Particle Swarm Optimization Algorithm with Invasive Weed, Advanced Materials Research, 621 (2013): 356-359.
DOI: 10.4028/www.scientific.net/amr.621.356
Google Scholar