The Influence on Clustering Results of Electricity Load Curves Using Different Distances

Article Preview

Abstract:

Distance choice is an important issue in power load pattern extraction using clustering techniques, so it is necessary to find the influence on clustering result of load curves using different distances in clustering algorithms. In this paper several distances are used in the k-means algorithm for clustering load curves and their influences on the clustering results are analyzed, therefore, the suitable distance for the k-means algorithms is obtained. An example with 147 electricity customers load curves shows distances have different influences on clustering results using the same clustering algorithm. The comparison results indicate that the choice of distances is an important issue in power load pattern extraction using clustering techniques and a suitable distance may improve the accuracy of mining algorithms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1440-1443

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Q. Liu, Q.L. Ding T.F. Zhang, Data pretreatment method of fuzzy c-means clustering effects, Electric Power Science and Engineering , 27(2011)24-27.

Google Scholar

[2] H. T. Yang, S. C. Chen and P. C. Peng, Genetic k-means-algorithm-based classification of direct load-control curves, IEEE Proceedings-Generation, Transmission and Distribution, 152(2005)489-495.

DOI: 10.1049/ip-gtd:20045006

Google Scholar

[3] S. Valero, M. Ortiz, C. Senabre, C. Alvarez, F. J. G. Franco and A. Gabaldon, Methods for customer and demand response policies selection in new electricity markets, IET Generation, Transmission & Distribution, 1(2007)104-110.

DOI: 10.1049/iet-gtd:20060183

Google Scholar

[4] M. Espinoza, C. Joye, R. Belmans and B. DeMoor, Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series, IEEE Transactions on Power Systems, 20(2005)1622-1630.

DOI: 10.1109/tpwrs.2005.852123

Google Scholar

[5] T.F. Zhang, G.Q. Zhang, J. Lu, X.P. Feng, W.C. Yang. A New Index and Classification Approach for Load Pattern Analysis of Large Electricity Customers, IEEE Transactions on Power Systems, 27(2012)153-160.

DOI: 10.1109/tpwrs.2011.2167524

Google Scholar

[6] J.A. Hartigan and M.A. Wong, Algorithm AS 136: a k-means clustering algorithm, Journal of the Royal Statistical SocietySeries C (Applied Statistics), 28(1979)100-108.

DOI: 10.2307/2346830

Google Scholar

[7] E. Carpaneto, G. Chicco, R. Napoli and M. Scutariu, Electricity customer classification using frequency-domain load pattern data, International Journal of Electrical Power & Energy Systems, 28(2006)13-20.

DOI: 10.1016/j.ijepes.2005.08.017

Google Scholar

[8] G. J. Tsekouras, N. D. Hatziargyriou and E. N. Dialynas, Two-stage pattern recognition of load curves for classification of electricity customers, IEEE Transactions on Power Systems, 22(2007)1120-1128.

DOI: 10.1109/tpwrs.2007.901287

Google Scholar

[9] W.Y. Li, J.Q. Zhou, X.F. Xiong and J.P. Lu, A statistic-fuzzy technique for clustering load curves, IEEE Transactions on Power Systems, 22(2007)890-891.

DOI: 10.1109/tpwrs.2007.894851

Google Scholar

[10] S. V. Verdu, M. O. Garcia, C. Senabre, A. G. Marin and F. J. G. Franco, Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps, IEEE Transactions on Power Systems, 21(2006).

DOI: 10.1109/tpwrs.2006.881133

Google Scholar

[11] N. M. Kohan, M. P. Moghaddam, S. M. Bidaki and G. R. Yousefi, Comparison of modified k-means and hierarchical algorithms in customers load curves clustering for designing suitable tariffs in electricity market, in Proc. 43rd International Universities Power Engineering Conference, Padova, 28 (2008).

DOI: 10.1109/upec.2008.4651519

Google Scholar

[12] Z. Zakaria, K. L. Lo and M. H. Sohod, Application of fuzzy clustering to determine electricity consumers' load profiles, in Proc. IEEE International Power and Energy Conference, Putra Jaya, Malaysia, 29(2006)99-103.

DOI: 10.1109/pecon.2006.346627

Google Scholar