Phytoremediation of Chromium and Lead Using Water Lettuce Pistia stratiotes L.)

Article Preview

Abstract:

Heavy metal pollution of water is of concern for human health and ecosystem. Under present investigation Pistia stratiotes L. (water lettuce) has been tested for removal of two important heavy metals chromium (Cr) and lead (Pb) from metal solution. This species was grown at four concentrations of Cr and Pb, i.e. 5.0, 10.0, 15.0 and 20.0 mg/L, respectively in single metal solution. This aquatic macrophyte has successfully removed up to 80% of Cr and 93% of Pb after 10 days. The bioconcentration factor (BCF) value ranged between 299 and 1026 for Cr and between 1672 and 1852 for Pb, respectively. The amount of BCF in Pistia stratiotes showed that removal of Pb was higher than removal of Cr. The accumulation of heavy metals was more obvious in the roots as compared to leaves. These findings contribute to the application of aquatic macrophytes to lead and chromium removal from moderately contaminated waters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2071-2075

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. K. Rai, Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes, Crit. Rev. Environ. Sci. Technol. 39 (2009) 697-753.

DOI: 10.1080/10643380801910058

Google Scholar

[2] N. Khellaf, M. Zerdaoui, Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. , Bioresource Technol. 100 (2009) 6137-6140.

DOI: 10.1016/j.biortech.2009.06.043

Google Scholar

[3] S. Qaiser, A.R. Saleemi, M. Umar, Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study, J. Hazard. Mater. 166 (2009) 998-1005.

DOI: 10.1016/j.jhazmat.2008.12.003

Google Scholar

[4] J. Weiss, M. Hondzo, D. Biesboer, M. Semmens, Laboratory study of heavy metal phytoremediation by three wetland macrophytes, Int. J. Phytoremed. 8 (2006) 245-259.

DOI: 10.1080/15226510600846798

Google Scholar

[5] O. Keskinkan, M.Z.L. Goksu, A. Yuceer, M. Basibuyuk, C.F. Forster, Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum), Process Biochem. 39 (2003)179-183.

DOI: 10.1016/s0032-9592(03)00045-1

Google Scholar

[6] V. K. Mishra, B.D. Tripathi, Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technol. 99 (2008) 7091-7097.

DOI: 10.1016/j.biortech.2008.01.002

Google Scholar

[7] P. Miretzky, A. Saralegui, F. Cirelli, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere 57 (2004) 997-1005.

DOI: 10.1016/j.chemosphere.2004.07.024

Google Scholar

[8] V.J. Odjegba, I.O. Fasidi,. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation, Ecotoxicology 13 (2004) 637-646.

DOI: 10.1007/s10646-003-4424-1

Google Scholar

[9] P. Prasertsupa, N. Ariyakanon, Removal of Chlorpyrifos by Water Lettuce (Pistia stratiotes L. ) and Duckweed (Lemna minor L. ), Int. J. Phytoremediat. 13 (2011) 383-395.

DOI: 10.1080/15226514.2010.495145

Google Scholar

[10] R.B. Clark, Characterization of phosphates in intact maize roots, J Agric Food Chem . 23 (1975) 458 -460.

DOI: 10.1021/jf60199a002

Google Scholar

[11] P. Tanhan, M. Kruatrachue, P. Pokethitiyook, R. Chaiyarat,. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L. ) King and Robinson], Chemosphere 68 (2007) 323-329.

DOI: 10.1016/j.chemosphere.2006.12.064

Google Scholar

[12] G.N.H. Rahmani, S.P.K. Sternberg, Bioremoval of lead from water using Lemna minor, Bioresource Technol. 70 (1999) 225-230.

DOI: 10.1016/s0960-8524(99)00050-4

Google Scholar

[13] M. M. Mufarrege, H. R. Hadad, M. A. Maine, Response of Pistia stratiotes to Heavy Metals (Cr, Ni, and Zn) and Phosphorous, Arch. Environ. Contam. Toxicol. 58(2010)53 - 61.

DOI: 10.1007/s00244-009-9350-7

Google Scholar

[14] A. Zayed, S. Gowthaman, N. Terry, Phytoaccumulation of trace elements by wetland plants: I-Duckweed, J. Environ. Qual. 27 (1998) 715-721.

DOI: 10.2134/jeq1998.00472425002700030032x

Google Scholar

[15] A. Tewari, R. Singh, N. K. Singh, U.N. Rai, Amelioration of municipal sludge by Pistia stratiotes L.: Role of antioxidant enzymes in detoxification of metals, Bioresource Technol. 99 (2008) 8715-8721.

DOI: 10.1016/j.biortech.2008.04.018

Google Scholar

[16] K. Satyakala, Jamil, Chromium induced biochemical changes in Eichhornia crassipes (Mart) Solms. and Pistia stratiotes, Bull. Environ. Contam. Toxicol. 48 (1992) 921-928.

DOI: 10.1007/bf00201155

Google Scholar

[17] P. Miretzky, A. Saralegui, F. Cirelli, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere 57 (2004) 997-1005.

DOI: 10.1016/j.chemosphere.2004.07.024

Google Scholar

[18] W.H.O. Ernst, J.A.C. Verkleij, H. Schat, Metal tolerance in plants, Acta Bot. Neerl. 41 (1992)229-248.

DOI: 10.1111/j.1438-8677.1992.tb01332.x

Google Scholar

[19] M. Pazouki, M. Keyanpour-Rad, S. Shafie, S. Shahhoseini, Efficiency of Penicillium chrysogenum PTCC 5037 in reducing low concentration of chromium hexavalent in a chromium electroplating plant wastewater, Bioresource Technol. 98 (2007) 2116-2122.

DOI: 10.1016/j.biortech.2006.08.005

Google Scholar

[20] U.N. Rai, R.D. Tripathi, M. Gupta, P. Chandra, Induction of phytochelatins under cadmium stress in water lettuce (Pistia stratiotes L. ), J. Environ. Sci. Health A 30 (1995) 2007-(2026).

DOI: 10.1080/10934529509376318

Google Scholar