Properties of Kevlar Fibers by Surface Modification

Article Preview

Abstract:

The surface of Kevlar fiber was modified by hydrogen peroxide solutions (H2O2) in this article. The interfacial properties of Kevlar fiber/epoxy composites were investigated by the single fiber pull-out test (SFP). The results showed that the interfacial shear strength (IFSS) of Kevlar /epoxy composites was remarkbly improved after surface modification and the breaking strength has not been affected appreciably. It provided an efficient method to make the surface modified Kevlar fiber for the application for the advanced composites at a lower production cost.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

688-691

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Y. Yue, G.X. Sui, H.C. Looi, Effects of heat treatment on the mechanical properties of Kevlar-29 fibre, Compos. Sci. Technol. 60(2000) 421-427.

DOI: 10.1016/s0266-3538(99)00137-2

Google Scholar

[2] R.J. Young, D.J. Bannister, A.J. Cervenka, I. Ahmad, Effect of surface treatment upon the pull-out behaviour of aramid fibres from epoxy resins, J. Mater. Sci. 35(2000) 1939-(1947).

Google Scholar

[3] W.F., McDonald, M.W. Urban, Modification of the PPTA fiber surfaces by ultrasonic waves, Polym. Mater. Sci. Eng. 59(1988) 306-310.

Google Scholar

[4] R. Benrashid, C. Tesoro Giuliana, Effect of surface-limited reactions on the properties of Kevlar fibers, Text. Res.J. 60 (1990) 334-344.

DOI: 10.1177/004051759006000604

Google Scholar

[5] E.M. Kim, J. Jang, Surface modification of meta-aramid films by UV/ozone irradiation, J. Fiber Polym. 11 (2010) 677-682.

DOI: 10.1007/s12221-010-0677-5

Google Scholar

[6] L.M. Plawky, W. Michaeli, Surface modification of an aramid fibre treated in a low-temperature microwave plasma, Mater. Sci. 31(1996) 6043-6053.

DOI: 10.1007/bf01152157

Google Scholar

[7] K. Kuepper, P. Schwartz, Modification of the fiber-matrix interface of p-aramid fibers using gas plasmas, Adhes. Sci. Technol. 5(1991) 165-176.

Google Scholar

[8] D. Knittel, W. Kesting, E. Schollmeyer, Surface structuring of synthetic fibres by UV laser irradiation. I. Phenomenological report, E. Polym. Int. 43(1997) 231-239.

DOI: 10.1002/(sici)1097-0126(199707)43:3<231::aid-pi797>3.0.co;2-e

Google Scholar

[9] M. Mori, Y. Uyama, Y. Ikada, Surface modification of aramid fibre by graft polymerization Polymer. 35(1994) 5336-5341.

DOI: 10.1016/0032-3861(94)90487-1

Google Scholar

[10] F. Poncin-Epaillard, B. Chevet, J.C. Brosse, Study of an aramid surface reactivity: modification with a cold plasma or an electron beam followed by a postgrafting reaction, J. Appl. Polym. Sci. 52(1994) 1047-1061.

DOI: 10.1002/app.1994.070520806

Google Scholar

[11] J. Maity, C. Jacob, C.K. Das, S. Alam, R.P. Singh, Direct fluorination of Twaron fiber and the mechanical, thermal and crystallization behaviour of short Twaron fiber reinforced polypropylene composites, Compos. Part A-Appl. S. 39(2008) 825-833.

DOI: 10.1016/j.compositesa.2008.01.009

Google Scholar

[12] T. Ai, R.M. Wang, W.Y. Zhou, Effect of grafting alkoxysilane on the surface properties of kevlar fiber, Polym. Compos. 28(2007) 412-416.

DOI: 10.1002/pc.20313

Google Scholar

[13] G.N. Fan, J.C. Zhao, Y.Q. Zhang, Z. Guo, Grafting modification of Kevlar fiber using horseradish peroxidase, Polym. Bull. 56(2006) 507-515.

DOI: 10.1007/s00289-005-0495-x

Google Scholar

[14] A.B. Coffey, C. M. O'Bradaigh, R.J. Young, Interfacial stress transfer in an aramid reinforced thermoplastic elastomer, J. Mater. Sci. 42(2007) 8053-8061.

DOI: 10.1007/s10853-007-1680-0

Google Scholar

[15] J. Kalantar, L.T. Drzal, The bonding mechanism of aramid fibres to epoxy matrices, J. Mater. Sci. 25(1990) 4186-4193.

DOI: 10.1007/bf00581071

Google Scholar

[16] A.A. Leal, J.M. Deitzel, S.H. McKnight, Jr. Gillespie, Interfacial behavior of high performance organic fibers, Polymer. 50(2009) 1228-1235.

DOI: 10.1016/j.polymer.2009.01.018

Google Scholar