Usage of Ti-TiO2 Electrode in Microbial Fuel Cell to Enhance the Electricity Generation and its Biocompatibility

Article Preview

Abstract:

Microbial fuel cell (MFC) provides the generation of electricity as bacteria on anode electrode oxidize organic content present in wastewater. This study presents simultaneously the electricity generation from two different synthetic wastewater mixtures using a new electrode in both anode and cathode compartments. Results showed that power output increased excessively in the case of Ti-TiO2 electrode. MFC reactors were mainly dominated by Geobacter, Shewanella, Pseudomonas and Clostridium species. The molecular results also demonstrated that Ti-TiO2 electrode is biocompatibility and able to be used in MFC because these species are electricity producing bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

371-376

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sun, F. Zhang, Z.H. Tong, G.P. Sheng, Y.Z. Chen, Y. Zhao, Y.P. Chen, S.Y. Zhou, G. Liu, Y.C. Tian, H.Q. Yu: Biosens. Bioelec Vol. 26 (2010), p.338.

Google Scholar

[2] Y. Qiao, S.J. Bao, C.M. Li, X.Q. Cui, Z.S. Lu, J. Bao: ACS Nano Vol. 2 (2008) 113.

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] I.S. Kim, K.J. Chae, M.J. Choi, W. Verstraete: Environ. Eng. Res. Vol. 13 (2008), p.51.

Google Scholar

[5] A. Heijne, H.V.M. Hamelers, M. Saakes, C.J.N. Buisman: Electrochim. Acta Vol. 53 (2008), p.5697.

Google Scholar

[6] J.R. Kim, S.H. Jung, J.M. Regan, B.E. Logan: Bioresour. Technol. Vol. 98 (2007), p.2568.

Google Scholar

[7] B.E. Logan: Environ Sci Technol Vol. 38(2004), p.5809.

Google Scholar

[8] B. Ozkaya, B. Akoglu, D. Karadag, G. Aci, E. Taskan, H. Hasar: Bioproc&Biosys. Eng. Vol. 35 (2012), p.1219.

Google Scholar

[9] N. Zhu, X. Cheni, T. Zhang, P. Wu, P. Li, J. Wu: Bioresour. Technol. Vol. 120 (2011), p.422.

Google Scholar

[10] D.H. Park, J.G. Zeikus: Appl. Microbiol. Biotechnol. Vol. 59 (2002), p.58.

Google Scholar

[11] K. Watanabe: J. Biosci. Bioeng. Vol. 106 (2008), p.528.

Google Scholar

[12] U. Schröder, J. Niessen, F. Scholz: Angew. Chem. Int. Edit. Vol. 42 (2003), p.2880.

Google Scholar

[13] J.M. Morris, S. Jin, J.Q. Wang, C.Z. Zhu, M.A. Urynowicz: Electrochem. Commun. Vol. 9(2007), p.1730.

Google Scholar

[14] K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete: Appl. Environ. Microbiol. Vol. 70(2004), p.5373.

DOI: 10.1128/aem.70.9.5373-5382.2004

Google Scholar

[15] Z. Hu: J Power Sources Vol. 179(2008), p.27.

Google Scholar

[16] A.P. Borole, C.Y. Hamilton, T.A. Vishnivetskaya, D. Leak, C. Andras, J. Morrell-Falvey, M. Keller, B. Davison: J Power Sources Vol. 191(2009), p.520.

DOI: 10.1016/j.jpowsour.2009.02.006

Google Scholar

[17] S. Xu, H. Liu: J. Appl. Microbiol. Vol. 111(2011), p.1108.

Google Scholar

[18] J. Lee, N.T. Phung, I.S. Chang, B.H. Kim, H.C. Sung, FEMS Microbiol. Lett. Vol. 223(2003), p.185.

Google Scholar

[19] G.T. Kim, G. Webster, J.W. Wimpenny, B.H. Kim, H.J. Kim, A.J. Weightman: J. Appl. Microbiol. Vol. 101(2006), p.698.

Google Scholar

[20] D.R. Bond, D.R. Lovley: Appl. Environ. Microbiol. Vol. 69(2003), p.1548.

Google Scholar