A Review of Field Occurrence of Crack Types and Crack Coalescence in Rocks

Article Preview

Abstract:

This paper briefly reviews the literature on the general crack formation mechanisms and the typical occurrence of crack coalescence in natural rocks, but with no particular reference to specific locations or geologic settings. The field occurrences of tensile wing cracks, horsetail cracks, anticracks and shear cracks, as well as their coalescence are described. In contrast to the tensile wing cracks which develop in the tensile quadrant, anticracks develop from the pre-existing discontinuities in the compressive quadrant. The discussion will be illustrated with plenty of field examples, supplemented by a review of commonly used terminologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-202

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hancock, P.L. Brittle microtectonics: principles and practice. Journal of structural geology, 7. 3, pp.437-457. (1985).

DOI: 10.1016/0191-8141(85)90048-3

Google Scholar

[2] Rispoli, R. Stress fields about strike-slop faults inferred from stylolites and tension gashes. Tectonophysics, 75, pp. T29-T36. (1981).

DOI: 10.1016/0040-1951(81)90274-2

Google Scholar

[3] Cooke, M.L. Fracture localization along faults with spatially varying friction. Journal of Geophysical Research, 102, pp.22425-22434. (1997).

DOI: 10.1029/97jb01829

Google Scholar

[4] Kattenhorn, S.A. and Marshall, S. T. Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: implications for fault mechanics. Journal of structural geology, 28(12), pp.2204-2221. (2006).

DOI: 10.1016/j.jsg.2005.11.010

Google Scholar

[5] Granier, T. Origin, damping, and pattern of development of faults in granite. Tectonics, 4. 7, pp.721-737. (1985).

DOI: 10.1029/tc004i007p00721

Google Scholar

[6] Roering, C. The geometrical significance of natural en-echelon crack arrays, Tectonophysics, 5(2), pp.107-123. (1968).

DOI: 10.1016/0040-1951(68)90084-x

Google Scholar

[7] Cruikshank, K.M., Zhao, G.H. and Johnson, A.M. Analysis of Minor Fracture Associated with Joints and Faulted Joints. Journal of Structural Geology 13(8), pp.865-886. (1991).

DOI: 10.1016/0191-8141(91)90083-u

Google Scholar

[8] Chinnery, M.A. Secondary faulting. Canadian Journal of Earth Sciences, 3, pp.163-174. (1966).

Google Scholar

[9] Martel, S.J. Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12(7), pp.869-882. (1990).

DOI: 10.1016/0191-8141(90)90060-c

Google Scholar

[10] Myers, R. and Aydin, A. The evolution of faults formed by shearing across joint zones in sandstone. Journal of Structural Geology, 26, pp.947-966. (2004).

DOI: 10.1016/j.jsg.2003.07.008

Google Scholar

[11] Renshaw, C.E. and Schulson, E. universal behavior in compressive failure of brittle materials. Nature, 412 (30), pp.897-900. (2001).

DOI: 10.1038/35091045

Google Scholar

[12] Rawnsley, K.D., Rives, T., Petit, J.P., Hencher, S.R. and Lumsden, A.C. Joint development in perturbed stress fields near faults. Journal of Structural Geology, 14(8/9), pp.939-951. (1992).

DOI: 10.1016/0191-8141(92)90025-r

Google Scholar

[13] McGrath, A.G. and Davison, I. Damage zone geometry around fault tips. Journal of Structural Geology, 17(7), pp.1011-1024. (1995).

DOI: 10.1016/0191-8141(94)00116-h

Google Scholar

[14] Li, H. and Wong, L.N.Y. Influence of flaw inclination and loading rate on cracking processes in specimens containing single flaws. International Journal of Solids and Structures, 49(18), pp.2482-2499. (2012).

DOI: 10.1016/j.ijsolstr.2012.05.012

Google Scholar

[15] Raynaud, S. and Delair, J. Genèse et mechanisms de la rupture fragile dans un calcaire et un granite soumis à un champ naturel de contrainte en compression. Bull. Bur. Rech. Géol. Minières (in French), Sect. 2., IV. (1978).

Google Scholar

[16] Gamond, J.F. Displacement features associated with fault zones: a comparison between observed examples and experimental models. Journal of Structural Geology, 5. 1, pp.33-45. (1983).

DOI: 10.1016/0191-8141(83)90005-6

Google Scholar

[17] Fletcher, R.C., and Pollard, D.D. Anticrack model for pressure solution surfaces. Geology, 9(9), pp.419-424. (1981).

DOI: 10.1130/0091-7613(1981)9<419:amfpss>2.0.co;2

Google Scholar

[18] Willemse, E.J.M., Peacock, D.C. and Aydin, A. Nucleation and growth of strike-slip faults in limestones from Somerset, U.K. Journal of Structural Geology, 19(12), pp.1461-1477. (1997).

DOI: 10.1016/s0191-8141(97)00056-4

Google Scholar

[19] Wong, L.N.Y. and Li, H. Initiation and propagation of tensile wing cracks and anti-wing cracks from a pre-existing open flaw under compression. The 12th International Congress on Rock Mechanics, Beijing, China, 16th - 21st October, 2011, pp.877-880. (2011).

DOI: 10.1201/b11646-161

Google Scholar

[20] Petit, J. and Barquins, M. Can natural faults propagate under Mode II conditions? Tectonics, 7(6), pp.1246-1265. (1988).

DOI: 10.1029/tc007i006p01243

Google Scholar

[21] Isaksson, P. and Ståhle, P. Prediction of shear crack growth direction under compressive loading and plane strain conditions. International Journal of Fracture, 113, pp.175-194. (2002).

Google Scholar

[22] Reyes, O. and Einstein, H.H. Failure mechanism of fractured rock – a fracture coalescence model. In W. Wittke (ed) Proceedings of the 7th International Congress of Rock Mechanics 1991, Aachen, Germany, 1, pp.333-340. Rotterdam: Balkema. (1991).

Google Scholar

[23] Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. Coalescence of fractures under shear stress experiments. J. Geophys Res, 100(6), pp.5975-90. (1995).

DOI: 10.1029/95jb00040

Google Scholar

[24] Bobet, A. and Einstein, H.H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J Rock Mech Min Sci, 35: 7, pp.863-88. (1998).

DOI: 10.1016/s0148-9062(98)00005-9

Google Scholar

[25] Martinez, A.R. Fracture coalescence in natural rock, MSc Thesis, Massachusetts Institute of Technology, 341p. (1999).

Google Scholar

[26] Melin, S. When does a crack grow under mode II conditions? International Journal of Fracture, 30, pp.103-114. (1986).

DOI: 10.1007/bf00034020

Google Scholar

[27] Melin, S. Fracture from a straight crack subjected to mixed-mode loading. International Journal of Fracture, 32, pp.257-263. (1987).

DOI: 10.1007/bf00018544

Google Scholar

[28] Shen, B. and Stephansson, O. Numerical analysis of mixed mode I and mode II fracture propagation. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr, 30(7), pp.861-867. (1993).

DOI: 10.1016/0148-9062(93)90037-e

Google Scholar

[29] Bobet, A. The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66, pp.187-219. (2000).

DOI: 10.1016/s0013-7944(00)00009-6

Google Scholar

[30] Crider, J.G. and Peacock, D.C.P. Initiation of brittle faults in the upper crust: a review of field observations. Journal of Structural Geology, 26, p.691–707. (2004).

DOI: 10.1016/j.jsg.2003.07.007

Google Scholar

[31] Engelder, T. Joints and shear fractures in rock. In B.K. Atkinson (ed) Fracture Mechanics of Rock , Academic Press, pp.27-69. (1987).

DOI: 10.1016/b978-0-12-066266-1.50007-7

Google Scholar

[32] Vita-Finzi, C. and King, G.C.P. The seismicity, geomorphology and structural evolution of the Corinth area of Greece, Philos. Trans. R. Soc. London, Ser. A, 314, pp.379-407. (1985).

DOI: 10.1098/rsta.1985.0024

Google Scholar

[33] Zhang, X.P. and Wong, L.N.Y.  Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mechanics and Rock Engineering. (available online).

DOI: 10.1007/s00603-012-0323-1

Google Scholar

[34] Crider, J.G. and Pollard, D.D. Fault linkage: Three-dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research, 103, B10, pp.24373-24391. (1998).

DOI: 10.1029/98jb01353

Google Scholar

[35] Peacock, D.C.P., Knipe, R.J. and Sanderson, D.J. Glossary of normal faults. Journal of Structural Geology, 22, pp.291-305. (2000).

DOI: 10.1016/s0191-8141(00)80102-9

Google Scholar

[36] Mansfield, C. and Cartwright, J. Fault growth by linkage: observations and implications from analogue models. Journal of Structural Geology, 23, p.745–763. (2001).

DOI: 10.1016/s0191-8141(00)00134-6

Google Scholar

[37] Kim, Y.S., Peacock, D.C.P. and Sanderson, D.J. Strike–slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25, p.793–812. (2003).

DOI: 10.1016/s0191-8141(02)00200-6

Google Scholar

[38] Peacock, D.C.P. The temporal relationship between joints and faults. Journal of Structural Geology, 23, pp.329-341. (2001).

DOI: 10.1016/s0191-8141(00)00099-7

Google Scholar

[39] Childs, C., Nicol, A., Walsh, J.J. and Watterson, J. Growth of vertically segmented normal faults. Journal of Structural Geology, 18(12), p.1389–1397. (1996).

DOI: 10.1016/s0191-8141(96)00060-0

Google Scholar

[40] Peacock, D. C. P., and D. J. Sanderson. Strike-slip relay ramps. Journal of Structural Geology, 17. 10, 1351-1360. (1995).

DOI: 10.1016/0191-8141(95)97303-w

Google Scholar

[41] Mollema, P.N. and Antonellini, M. Development of strike-slip faults in the dolomites of the Sella Group, Northern Italy. Journal of Structural Geology, 21, pp.273-292. (1999).

DOI: 10.1016/s0191-8141(98)00121-7

Google Scholar

[42] van der Zee, W. and Urai, J.L. Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia. Journal of Structural Geology, 27(12), pp.2281-2300. (2005).

DOI: 10.1016/j.jsg.2005.07.006

Google Scholar