[1]
Hancock, P.L. Brittle microtectonics: principles and practice. Journal of structural geology, 7. 3, pp.437-457. (1985).
DOI: 10.1016/0191-8141(85)90048-3
Google Scholar
[2]
Rispoli, R. Stress fields about strike-slop faults inferred from stylolites and tension gashes. Tectonophysics, 75, pp. T29-T36. (1981).
DOI: 10.1016/0040-1951(81)90274-2
Google Scholar
[3]
Cooke, M.L. Fracture localization along faults with spatially varying friction. Journal of Geophysical Research, 102, pp.22425-22434. (1997).
DOI: 10.1029/97jb01829
Google Scholar
[4]
Kattenhorn, S.A. and Marshall, S. T. Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: implications for fault mechanics. Journal of structural geology, 28(12), pp.2204-2221. (2006).
DOI: 10.1016/j.jsg.2005.11.010
Google Scholar
[5]
Granier, T. Origin, damping, and pattern of development of faults in granite. Tectonics, 4. 7, pp.721-737. (1985).
DOI: 10.1029/tc004i007p00721
Google Scholar
[6]
Roering, C. The geometrical significance of natural en-echelon crack arrays, Tectonophysics, 5(2), pp.107-123. (1968).
DOI: 10.1016/0040-1951(68)90084-x
Google Scholar
[7]
Cruikshank, K.M., Zhao, G.H. and Johnson, A.M. Analysis of Minor Fracture Associated with Joints and Faulted Joints. Journal of Structural Geology 13(8), pp.865-886. (1991).
DOI: 10.1016/0191-8141(91)90083-u
Google Scholar
[8]
Chinnery, M.A. Secondary faulting. Canadian Journal of Earth Sciences, 3, pp.163-174. (1966).
Google Scholar
[9]
Martel, S.J. Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12(7), pp.869-882. (1990).
DOI: 10.1016/0191-8141(90)90060-c
Google Scholar
[10]
Myers, R. and Aydin, A. The evolution of faults formed by shearing across joint zones in sandstone. Journal of Structural Geology, 26, pp.947-966. (2004).
DOI: 10.1016/j.jsg.2003.07.008
Google Scholar
[11]
Renshaw, C.E. and Schulson, E. universal behavior in compressive failure of brittle materials. Nature, 412 (30), pp.897-900. (2001).
DOI: 10.1038/35091045
Google Scholar
[12]
Rawnsley, K.D., Rives, T., Petit, J.P., Hencher, S.R. and Lumsden, A.C. Joint development in perturbed stress fields near faults. Journal of Structural Geology, 14(8/9), pp.939-951. (1992).
DOI: 10.1016/0191-8141(92)90025-r
Google Scholar
[13]
McGrath, A.G. and Davison, I. Damage zone geometry around fault tips. Journal of Structural Geology, 17(7), pp.1011-1024. (1995).
DOI: 10.1016/0191-8141(94)00116-h
Google Scholar
[14]
Li, H. and Wong, L.N.Y. Influence of flaw inclination and loading rate on cracking processes in specimens containing single flaws. International Journal of Solids and Structures, 49(18), pp.2482-2499. (2012).
DOI: 10.1016/j.ijsolstr.2012.05.012
Google Scholar
[15]
Raynaud, S. and Delair, J. Genèse et mechanisms de la rupture fragile dans un calcaire et un granite soumis à un champ naturel de contrainte en compression. Bull. Bur. Rech. Géol. Minières (in French), Sect. 2., IV. (1978).
Google Scholar
[16]
Gamond, J.F. Displacement features associated with fault zones: a comparison between observed examples and experimental models. Journal of Structural Geology, 5. 1, pp.33-45. (1983).
DOI: 10.1016/0191-8141(83)90005-6
Google Scholar
[17]
Fletcher, R.C., and Pollard, D.D. Anticrack model for pressure solution surfaces. Geology, 9(9), pp.419-424. (1981).
DOI: 10.1130/0091-7613(1981)9<419:amfpss>2.0.co;2
Google Scholar
[18]
Willemse, E.J.M., Peacock, D.C. and Aydin, A. Nucleation and growth of strike-slip faults in limestones from Somerset, U.K. Journal of Structural Geology, 19(12), pp.1461-1477. (1997).
DOI: 10.1016/s0191-8141(97)00056-4
Google Scholar
[19]
Wong, L.N.Y. and Li, H. Initiation and propagation of tensile wing cracks and anti-wing cracks from a pre-existing open flaw under compression. The 12th International Congress on Rock Mechanics, Beijing, China, 16th - 21st October, 2011, pp.877-880. (2011).
DOI: 10.1201/b11646-161
Google Scholar
[20]
Petit, J. and Barquins, M. Can natural faults propagate under Mode II conditions? Tectonics, 7(6), pp.1246-1265. (1988).
DOI: 10.1029/tc007i006p01243
Google Scholar
[21]
Isaksson, P. and Ståhle, P. Prediction of shear crack growth direction under compressive loading and plane strain conditions. International Journal of Fracture, 113, pp.175-194. (2002).
Google Scholar
[22]
Reyes, O. and Einstein, H.H. Failure mechanism of fractured rock – a fracture coalescence model. In W. Wittke (ed) Proceedings of the 7th International Congress of Rock Mechanics 1991, Aachen, Germany, 1, pp.333-340. Rotterdam: Balkema. (1991).
Google Scholar
[23]
Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. Coalescence of fractures under shear stress experiments. J. Geophys Res, 100(6), pp.5975-90. (1995).
DOI: 10.1029/95jb00040
Google Scholar
[24]
Bobet, A. and Einstein, H.H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J Rock Mech Min Sci, 35: 7, pp.863-88. (1998).
DOI: 10.1016/s0148-9062(98)00005-9
Google Scholar
[25]
Martinez, A.R. Fracture coalescence in natural rock, MSc Thesis, Massachusetts Institute of Technology, 341p. (1999).
Google Scholar
[26]
Melin, S. When does a crack grow under mode II conditions? International Journal of Fracture, 30, pp.103-114. (1986).
DOI: 10.1007/bf00034020
Google Scholar
[27]
Melin, S. Fracture from a straight crack subjected to mixed-mode loading. International Journal of Fracture, 32, pp.257-263. (1987).
DOI: 10.1007/bf00018544
Google Scholar
[28]
Shen, B. and Stephansson, O. Numerical analysis of mixed mode I and mode II fracture propagation. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr, 30(7), pp.861-867. (1993).
DOI: 10.1016/0148-9062(93)90037-e
Google Scholar
[29]
Bobet, A. The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66, pp.187-219. (2000).
DOI: 10.1016/s0013-7944(00)00009-6
Google Scholar
[30]
Crider, J.G. and Peacock, D.C.P. Initiation of brittle faults in the upper crust: a review of field observations. Journal of Structural Geology, 26, p.691–707. (2004).
DOI: 10.1016/j.jsg.2003.07.007
Google Scholar
[31]
Engelder, T. Joints and shear fractures in rock. In B.K. Atkinson (ed) Fracture Mechanics of Rock , Academic Press, pp.27-69. (1987).
DOI: 10.1016/b978-0-12-066266-1.50007-7
Google Scholar
[32]
Vita-Finzi, C. and King, G.C.P. The seismicity, geomorphology and structural evolution of the Corinth area of Greece, Philos. Trans. R. Soc. London, Ser. A, 314, pp.379-407. (1985).
DOI: 10.1098/rsta.1985.0024
Google Scholar
[33]
Zhang, X.P. and Wong, L.N.Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mechanics and Rock Engineering. (available online).
DOI: 10.1007/s00603-012-0323-1
Google Scholar
[34]
Crider, J.G. and Pollard, D.D. Fault linkage: Three-dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research, 103, B10, pp.24373-24391. (1998).
DOI: 10.1029/98jb01353
Google Scholar
[35]
Peacock, D.C.P., Knipe, R.J. and Sanderson, D.J. Glossary of normal faults. Journal of Structural Geology, 22, pp.291-305. (2000).
DOI: 10.1016/s0191-8141(00)80102-9
Google Scholar
[36]
Mansfield, C. and Cartwright, J. Fault growth by linkage: observations and implications from analogue models. Journal of Structural Geology, 23, p.745–763. (2001).
DOI: 10.1016/s0191-8141(00)00134-6
Google Scholar
[37]
Kim, Y.S., Peacock, D.C.P. and Sanderson, D.J. Strike–slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25, p.793–812. (2003).
DOI: 10.1016/s0191-8141(02)00200-6
Google Scholar
[38]
Peacock, D.C.P. The temporal relationship between joints and faults. Journal of Structural Geology, 23, pp.329-341. (2001).
DOI: 10.1016/s0191-8141(00)00099-7
Google Scholar
[39]
Childs, C., Nicol, A., Walsh, J.J. and Watterson, J. Growth of vertically segmented normal faults. Journal of Structural Geology, 18(12), p.1389–1397. (1996).
DOI: 10.1016/s0191-8141(96)00060-0
Google Scholar
[40]
Peacock, D. C. P., and D. J. Sanderson. Strike-slip relay ramps. Journal of Structural Geology, 17. 10, 1351-1360. (1995).
DOI: 10.1016/0191-8141(95)97303-w
Google Scholar
[41]
Mollema, P.N. and Antonellini, M. Development of strike-slip faults in the dolomites of the Sella Group, Northern Italy. Journal of Structural Geology, 21, pp.273-292. (1999).
DOI: 10.1016/s0191-8141(98)00121-7
Google Scholar
[42]
van der Zee, W. and Urai, J.L. Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia. Journal of Structural Geology, 27(12), pp.2281-2300. (2005).
DOI: 10.1016/j.jsg.2005.07.006
Google Scholar