[1]
Alexander Y,Ronald L,Recognition of Bearing Failures using Wavelets and Neural Networks,TFTS97,Coventry(UK), August 27-29,(1997).
Google Scholar
[2]
GA Adepoju,SOA Ogunjuyigbe,KO Alawode.Application of Neural Network to Load Forecasting in Nigerian Electrical Power System [J].The Pacific Journal of Science and Technology.2007,8(1):68-72.
Google Scholar
[3]
U.B. Filik,M. Kurban.A new approach for the short-term load forecasting with autoregressive and artificial neural network models [J]. International Journal of Computational Intelligence Research.2007,3(1):66-71.
DOI: 10.5019/j.ijcir.2007.88
Google Scholar
[4]
M. Daneshdoost,M. Lotfalian,G. Bumroonggit,et al.Neural network with fuzzy set-based classification for short-term load forecasting [J] .Power Systems, IEEE Transactions on.1998,13 (4):1386-1391.
DOI: 10.1109/59.736281
Google Scholar
[5]
PK Dash,AC Liew,S. Rahman.Fuzzy neural network and fuzzy expert system for load forecasting [J].Generation, Transmission and Distribution, IEE Proceedings-,1996,IET: 106-114.
DOI: 10.1049/ip-gtd:19960314
Google Scholar
[6]
T. Joachims.Making large scale SVM learning practical [J] .(1999).
Google Scholar
[7]
J.C. Platt.12 Fast Training of Support Vector Machines using Sequential Minimal Optimization [J] .(1999).
Google Scholar
[8]
S.S. Keerthi S.K. Shevade,C. Bhattacharyya,et al.Improvements to Platt's SMO algorithm for SVM classifier design [J] .Neural Computation.2001,13 (3):637-649.
DOI: 10.1162/089976601300014493
Google Scholar
[9]
P.W. Chen J.Y. Wang H.M. Lee.Model selection of SVMs using GA approach [C] .Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on,2004,IEEE: 2035-(2040).
DOI: 10.1109/ijcnn.2004.1380929
Google Scholar
[10]
Z. Chunhong,J. Licheng.Automatic parameters selection for SVM based on GA [J] .Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 2004,IEEE:1869-1872.
DOI: 10.1109/wcica.2004.1341000
Google Scholar