An Image Filter Arithmetic Based on Shearlets

Article Preview

Abstract:

Rician noise pollutes Magnetic Resonance Imaging (MRI) image and makes later work worse. This paper proposed an filter algorithm which comprehensive utilize Genetic Algorithm (GA) and Shearlet transform. Firstly, it performs a wavelet multi-scale decomposition of image; then, it builds target function in GA; thirdly, it uses the GA to optimal coefficients of Shearlet wavelet threshold value in different scale and different orientation; finally, we obtain the composite image by using inverse lifting wavelet transform. Experimental results show that, the new algorithm presented here is much effective in removing Rician noise.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1318-1321

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data[J]. Magnetic Resonance in Medicine, 1995, 34(6): 910-914.

DOI: 10.1002/mrm.1910340618

Google Scholar

[2] Labate D, Lim W Q, Kutyniok G, et al. Sparse multidimensional representation using shearlets [C]/Optics & Photonics 2005. International Society for Optics and Photonics, 2005: 59140U-59140U-9.

DOI: 10.1117/12.613494

Google Scholar

[3] Yi S, Labate D, Easley G R, et al. A shearlet approach to edge analysis and detection[J]. Image Processing, IEEE Transactions on, 2009, 18(5): 929-941.

DOI: 10.1109/tip.2009.2013082

Google Scholar

[4] Yi S, Labate D, Easley G R, et al. Edge detection and processing using shearlets [C]/Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on. IEEE, 2008: 1148-1151.

DOI: 10.1109/icip.2008.4711963

Google Scholar

[5] Easley, G.R.; Labate, D.; Colonna, F., Shearlet-Based Total Variation Diffusion for Denoising, Image Processing, IEEE Transactions on , vol. 18, no. 2, p.260, 268, Feb. (2009).

DOI: 10.1109/tip.2008.2008070

Google Scholar

[6] Sheng Yi; Labate, D.; Easley, G.R.; Krim, H., A Shearlet Approach to Edge Analysis and Detection, Image Processing, IEEE Transactions on , vol. 18, no. 5, p.929, 941, May (2009).

DOI: 10.1109/tip.2009.2013082

Google Scholar

[7] Easley, G.R.; Labate, D.; Wang-Q Lim, Optimally Sparse Image Representations using Shearlets, " Signals, Systems and Computers, 2006. ACSSC , 06. Fortieth Asilomar Conference on , vol., no., p.974, 978, Oct. 29 2006-Nov. 1 (2006).

DOI: 10.1109/acssc.2006.354897

Google Scholar

[8] Xi Chen; Chengzhi Deng; Shengqian-Wang, Shearlet-Based Adaptive Shrinkage Threshold for Image Denoising, E-Business and E-Government (ICEE), 2010 International Conference on , vol., no., p.1616, 1619, 7-9 May (2010).

DOI: 10.1109/icee.2010.409

Google Scholar

[9] Sun H, Zhao J. Shearlet Threshold Denoising Method Based on Two Sub-swarm Exchange Particle Swarm Optimization[C]/Granular Computing (GrC), 2010 IEEE International Conference on. IEEE, 2010: 449-452.

DOI: 10.1109/grc.2010.99

Google Scholar

[10] Murata T, Ishibuchi H. MOGA: Multi-objective genetic algorithms[C]/Evolutionary Computation, 1995., IEEE International Conference on. IEEE, 1995, 1: 289.

DOI: 10.1109/icec.1995.489161

Google Scholar

[11] Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary computation, 1999, 7(3): 205-230.

DOI: 10.1162/evco.1999.7.3.205

Google Scholar

[12] Firouzmanesh, A.; Boulanger, P., Image De-blurring Using Shearlets, Computer and Robot Vision (CRV), 2012 Ninth Conference on , vol., no., p.167, 173, 28-30 May (2012).

DOI: 10.1109/crv.2012.30

Google Scholar

[13] Guo Q, Yu S, Chen X, et al. Shearlet-based image denoising using bivariate shrinkage with intra-band and opposite orientation dependencies[C]/Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on. IEEE, 2009, 1: 863-866.

DOI: 10.1109/cso.2009.218

Google Scholar