Infrared Biosensor Test System under Pulsed Bias Voltage

Article Preview

Abstract:

Infrared biosensor has been a hot area of research for several years in infrared field. This paper proposes a method to test infrared biosensor array which is not bonding with ROIC. The presented ROIC-less infrared biosensor is encapsulated in a vacuum chip scale packaging, and we design the off-chip “ROIC” in order to read out signal of infrared biosensor. It is necessary to apply bias voltage on pixels when infrared biosensor works, we gave a simulation of infrared biosensor in pulsed bias votage mode according to the infrared biosensor heat balance equation. Based on the simulation result, we have implemented the test system for ROIC-less and small-scale infrared biosensor array. We use FPGA as main controller to readout the infrared signal and transfer the data to PC via USB interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1539-1545

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. W. Kruse, Uncooled Thermal Imaging Arrays, Systems and Applications, SPIE Press Bellingham, Washington, ISBN 0-8194-4122-8, (2002).

Google Scholar

[2] R. A. Wood, Monolithic Silicon Microbolometer Arrays, Semiconductors and Semimetals, Vol. 47, Chapter 3, pp.43-121, (1997).

DOI: 10.1016/s0080-8784(08)62689-7

Google Scholar

[3] Richard J. Blackwell, Tuyet Bach, Dan O'Donnell, Jeannie Geneczko, and Michael Joswick 17μm pixel 640×480 microbolometer FPA development at BAE Systems, Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65421U, (2007).

DOI: 10.1117/12.723474

Google Scholar

[4] C. Li, et al., Recent development of ultra small pixel uncooled focal plane arrays at DRS, Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65421Y, (2007).

DOI: 10.1117/12.720267

Google Scholar

[5] D. Murphy, et al., 640×512 17μm microbolometer FPA and sensor development, Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65421Z, (2007).

Google Scholar

[6] J - J. Yon, Eric Mottin, and Jean-Luc Tissot, Latest amorphous silicon microinfrared biosensor developments at LETI-LIR, Proc. SPIE 6940, Infrared Technology and Applications XXXIV, 69401W, (2008).

DOI: 10.1117/12.780538

Google Scholar

[7] Frank Niklaus , Christian Vieider, and Henrik Jakobsen, MEMS-based uncooled infrared bolometer arrays: a review, Proc. SPIE 6836, MEMS/MOEMS Technologies and Applications III, 68360D, (2008).

DOI: 10.1117/12.755128

Google Scholar

[8] B. Li, S. Huang and X. Zhang, Transient mechanical and electrical properties of uncooled resistive microbolometer focal plane arrays, Proc. SPIE 5564, pp.123-132, (2004).

DOI: 10.1117/12.562063

Google Scholar

[9] P. Eriksson, J. Y. Andersson, G. Stemme, Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors, J. MEMS 6 p.55–61, (1997).

DOI: 10.1109/84.557531

Google Scholar

[10] Christer Jansson , Ulf Ringh, and Kevin C. Liddiard, Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation, Proc. SPIE 2552, Infrared Technology XXI, p.644–653, (1995).

DOI: 10.1117/12.218263

Google Scholar

[11] Frank Niklaus ; Christer Jansson ; Adit Decharat ; Jan-Erik Källhammer ; Håkan Pettersson and Göran Stemme, Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: performance model and tradeoffs, Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65421M, (2007).

DOI: 10.1117/12.719163

Google Scholar

[12] S. Ufuk Senveli ; M. Yusuf Tanrikulu and Tayfun Akin, A thermal conductance optimization approach for uncooled microbolometers, Proc. SPIE 8012, Infrared Technology and Applications XXXVII, 80121T, (2011).

DOI: 10.1117/12.890234

Google Scholar

[13] Alp Oguz ; Murat Tepegoz and Tayfun Akin, A bias heating cancellation method for resistive uncooled microbolometer detectors, Proc. SPIE 7298, Infrared Technology and Applications XXXV, 72982G, (2009).

DOI: 10.1117/12.823720

Google Scholar