[1]
J. Sohn, N.S. Kim and W. Sung: A statistical model-based voice activity detection. IEEE Signal Processing Letter, vol. 6(1) (1999), pp.1-3.
Google Scholar
[2]
N. Mesgarani and S. Shamma: Speech enhancement based on filtering the spectrotemporal modulations. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)}, vol 1 (2005), pp.1520-6149.
DOI: 10.1109/icassp.2005.1415311
Google Scholar
[3]
F. Beritelli, S. Casale and A. Cavallaero: A robust voice activity detector for wireless communications using soft computing, Ist. di Inf. e Telecommun., Catania Univ, vol 16(9) (1998), pp.1818-1829.
DOI: 10.1109/49.737650
Google Scholar
[4]
S.G. Tanyer and H. Ozer: Voice activity detection in non-stationary noise data. IEEE Trans. Speech Audio Processing, vol 6(2) (2002), pp.478-482.
DOI: 10.1109/89.848229
Google Scholar
[5]
T. Kinnunen, E. Chernenko, M. Tuononen, et al: Voice activity detection using MFCC features and support vector machine. Int. Conf. on Speech and Computer, (2007), pp.2685-2692.
Google Scholar
[6]
A. Davis, S. Nordholm and R. Togneri: Statistical voice activity detection using low-variance spectrum estimation and an adaptive threshold. IEEE Trans. Audio Speech Lang. Process, vol 14(2) (2007), pp.2693-2709.
DOI: 10.1109/tsa.2005.855842
Google Scholar
[7]
S. Valipour, F. Razzazi, et al: The reduced nearest neighbor rule. 2th International Conference on Computational Intelligence, Modelling and Simulation, vol 18(3) (2010), pp.345-350.
Google Scholar
[8]
Y. Liang, X. Liu, Y. Lou and B. Shan: An improved noise robust voice activity detector based on hidden semi-Markov models. Pattern Recognition Letters, vol 32(7) (2011), pp.1044-1053.
DOI: 10.1016/j.patrec.2011.02.015
Google Scholar
[9]
L.R. Rabiner: A tutorial on hidden Markov model and selected applications in speech recognition. IEEE Proceedings, vol 77(2) (1989), pp.257-286.
DOI: 10.1109/5.18626
Google Scholar
[10]
S. Shafieea,F. Almasganj, B. Vazirnezhad and A. Jafari: A two-stage speech activity detection system considering fractal aspects of prosody. Pattern Recognition Letters, vol 31(9) (2007), pp.936-948.
DOI: 10.1016/j.patrec.2009.12.014
Google Scholar
[11]
J.W. Shin, J.H. Chang and N.S. Kim: Voice activity detection based on a family of parametric distributions. Pattern Recognition Letters, vol 28(11) (2007), pp.1295-1299.
DOI: 10.1016/j.patrec.2006.11.015
Google Scholar
[12]
R. Bakis: Continuous speech word recognition via centisecond acoustic states. In Proc. ASA Meeting, Washington, DC 179, (1976), pp.2273-2282.
Google Scholar
[13]
Y. Hu and P. Loizou: Evaluation of objective quality measures for speech enhancement. IEEE Tran. Speech Audio Process, vol 16(1) (2008), pp.229-238.
DOI: 10.1109/tasl.2007.911054
Google Scholar
[14]
K. Kokkinos and P. Maragos: Nonlinear speech analysis using models for chaotic systems, IEEE Tran. Speech Audio Process, vol 13 (2005), pp.1098-1109.
DOI: 10.1109/tsa.2005.852982
Google Scholar
[15]
M. Banbrook and S. McLaughlin: Is speech chaotic?: Invariant geometrical measures for speech data, IEEE Colloquium on Exploiting Chaos in Signal Processing, vol 16(8) (1994), pp.1-8.
Google Scholar
[16]
R. Esteller, G. Vachtsevanos, J. Echauz and B. Litt: Finding representative patterns with ordered projections. IEEE Trans. Circuits Syst., vol 48(2) (2001), pp.177-183.
DOI: 10.1109/81.904882
Google Scholar
[17]
B. Luo, Z. Pei, L. Xu, D. Hu: A New Method Based on HMMs and K-means Algorithms for Noise-Robust Voice Activity Detector, Applied Mechanics and Materials Vols 128-129 (2012), pp.461-464.
DOI: 10.4028/www.scientific.net/amm.128-129.461
Google Scholar