Research on Chlorine Dosing Control Based on Adaptive Generalized Predictive Control

Article Preview

Abstract:

Chlorine dosing is a complicated system with time delay, time-varying, non-linear and coupling. In this paper, multivariable adaptive generalized predictive controller based on Smith predictor is proposed. Instead of the optimal predictor, the Smith predictor with adaptive identifying parameters can increase the robustness of the MIMO system. Simulation and application in water-works at Suzhou (China) shows that the algorithm can overcome time-varying, time delay and disturbance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haiyan C, Xinhua Z, Yin Y. Research on residual chlorine decay model of reclaimed water network[C]. Electronics, Communications and Control (ICECC), 2011 International Conference on. IEEE, 2011: 3899-3902.

DOI: 10.1109/icecc.2011.6067987

Google Scholar

[2] Clark R M, Sivaganesan M. Predicting chlorine residuals in drinking water: Second order model [J]. Journal of water resources planning and management, 2002, 128(2): 152-161.

DOI: 10.1061/(asce)0733-9496(2002)128:2(152)

Google Scholar

[3] Rossman L A, Clark R M, Grayman W M. Modeling chlorine residuals in drinking-water distribution systems [J]. Journal of environmental engineering, 1994, 120(4): 803-820.

DOI: 10.1061/(asce)0733-9372(1994)120:4(803)

Google Scholar

[4] Chang T, Brdys M A, Duzinkiewicz K. Decentralized Robust Model Predictive Control of Chlorine Residuals in Drinking Water Distribution Systems[C]. ASCE, 2004, 1-10.

DOI: 10.1061/40685(2003)255

Google Scholar

[5] Duzinkiewicz K, Brdys M A, Chang T. Hierarchical model predictive control of integrated quality and quantity in drinking water distribution systems [J]. Urban Water Journal, 2005, 2(2): 125-137.

DOI: 10.1080/15730620500144043

Google Scholar

[6] Pawlowski A, Guzmán J L, Normey-Rico J E, et al. Improving feedforward disturbance compensation capabilities in Generalized Predictive Control[J]. Journal of Process Control, 2012, 22(3): 527-539.

DOI: 10.1016/j.jprocont.2012.01.010

Google Scholar

[7] Su B, Chen Z, Yuan Z. Multivariable decoupling predictive control with input constraints and its application on chemical process[J]. Chinese Journal of Chemical Engineering, 2006, 14(2): 216-222.

DOI: 10.1016/s1004-9541(06)60061-x

Google Scholar

[8] Ginhoux R, Gangloff J, de Mathelin M, et al. Active filtering of physiological motion in robotized surgery using predictive control[J]. Robotics, IEEE Transactions on, 2005, 21(1): 67-79.

DOI: 10.1109/tro.2004.833812

Google Scholar

[9] Peng L, Jiang W, Bei G, et al. Multi-tenant behavior measurement based on multi-variable generalized predictive control[C]/Information Science and Digital Content Technology (ICIDT), 2012 8th International Conference on. IEEE, 2012, 1: 24-27.

Google Scholar

[10] Shi W, Ma Y, Chen Y, et al. Adaptive fuzzy generalized predictive control for a class of unknown parameters multivariable linear system[C]/Control and Decision Conference (CCDC), 2012 24th Chinese. IEEE, 2012: 2691-2695.

DOI: 10.1109/ccdc.2012.6244427

Google Scholar

[11] Normey-Rico J E, Camacho E F. Multivariable generalised predictive controller based on the Smith predictor[J]. IEE Proceedings-Control Theory and Applications, 2000, 147(5): 538-546.

DOI: 10.1049/ip-cta:20000590

Google Scholar

[12] Ho Y K, Mjalli F S, Yeoh H K. Centralized vs decentralized adaptive generalized predictive control of a biodiesel reactor[J]. Asia‐Pacific Journal of Chemical Engineering, (2012).

DOI: 10.1002/apj.1638

Google Scholar