Overload Capability of Linear Flux Switching Permanent Magnet Machines

Article Preview

Abstract:

The 2D nature of magnetic field in permanent magnet flux-switching machines and the presence of all magnetic field sources [permanent magnets and windings (armature windings and eventually excitation coils)] in the stator, which implies a completely passive moving armature, makes them very good candidates in many different applications. Due to these interesting features, rotating and linear permanent magnet flux switching structures attracted considerable research efforts in the last years. However, to date, the overload capability of this kind of structures has not been investigated in detail. The study presented in this paper will help identify main factors limiting the improvement of overload capability for PM flux switching machines. Solutions to improve this characteristic will also be explored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-352

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hoang, A. H. Ben-Ahmed, and J. Lucidarme, Switching flux PM polyphased synchronous machines, in Proc. 7th Eur. Conf. Power Electron. Appl., 1997, vol. 3, p.903–908.

Google Scholar

[2] Z. Q. Zhu, and J. T. Chen, Advanced flux-switching permanent magnet brushless machines, IEEE Trans. Magn., Vol. 46, No. 6, pp.1447-1453, June (2010).

DOI: 10.1109/tmag.2010.2044481

Google Scholar

[3] R. L. Owen, Z. Q. Zhu, A. S. Thomas, G. W. Jewell, and D. Howe, Alternate poles wound flux-switching permanent-magnet brushless AC machines, IEEE Trans. Ind. Appl., Vol. 46, No. 2, pp.790-797, March/April (2010).

DOI: 10.1109/tia.2009.2039913

Google Scholar

[4] E. Ilhan, B. L. J. Gysen, J. J. H. Paulides, and E. A. Lomonova, Analytical hybrid model for flux switching permanent magnet machines, IEEE Trans. Magn., Vol. 46, No. 6, pp.1762-1765, June (2010).

DOI: 10.1109/tmag.2010.2042579

Google Scholar

[5] J. T. Chen, and Z. Q. Zhu, Comparison of all- and alternate-poles-wound flux-switching PM machines having different stator and rotor pole numbers, IEEE Trans. Ind. Appl., Vol. 46, No. 4, pp.1406-1415, July/August (2010).

DOI: 10.1109/tia.2010.2049812

Google Scholar

[6] J. T. Chen, Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, A novel E-core switched-flux PM brushless AC Machine, IEEE Trans. Ind. Appl., Vol. 47, No. 3, pp.1273-1282, May/June (2011).

DOI: 10.1109/tia.2011.2126543

Google Scholar

[7] E. Sulaiman, T. Kosaka, and N. Matsui, High power density design of 6-slot–8-pole hybrid excitation flux switching machine for hybrid electric vehicles, IEEE Trans. Magn., Vol. 47, No. 10, pp.4453-4456, October (2011).

DOI: 10.1109/tmag.2011.2140315

Google Scholar

[8] J. Ojeda, M. G. Simões, G. Li, and M. Gabsi, Design of a flux-switching electrical generator for wind turbine systems, IEEE Trans. Ind. Appl., Vol. 48, No. 6, pp.1808-1816, Nov. /Dec. (2012).

DOI: 10.1109/tia.2012.2221674

Google Scholar

[9] L. Hao, M. Lin , X. Zhao , X. Fu , Z.Q. Zhu , and P. Jin, Static characteristics analysis and experimental study of a novel axial field flux-switching permanent magnet generator, IEEE Trans. Magn., Vol. 48, No. 11, pp.4212-4215, Nov. (2012).

DOI: 10.1109/tmag.2012.2204234

Google Scholar

[10] J. Wang, W. Wang, K. Atallah, and D. Howe, Design considerations for tubular flux-switching permanent magnet machines, IEEE Trans. Magn., Vol. 44, No. 11, pp.4026-4032, Nov. (2008).

DOI: 10.1109/tmag.2008.2002773

Google Scholar

[11] C. F. Wang, J. X. Shen, Y. Wang, L. L. Wang, and M. J. Jin, A new method for reduction of detent force in permanent magnet flux-switching linear motors, IEEE Trans. Magn., Vol. 45, No. 6, pp.2843-2846, June (2009).

DOI: 10.1109/tmag.2009.2018689

Google Scholar

[12] M. J. Jin, C. F. Wang, J. X. Shen, and B. Xia, A modular permanent-magnet flux-switching linear machine with fault-tolerant capability, IEEE Trans. Magn., Vol. 45, No. 8, pp.3179-3186, August (2009).

DOI: 10.1109/tmag.2009.2020090

Google Scholar

[13] L. Huang, H. Yu, M. Hu, J. Zhao, and Z. Cheng, A novel flux-switching permanent-magnet linear generator for wave energy extraction application, IEEE Trans. Magn., Vol. 47, No. 5, pp.1034-1037, May (2011).

DOI: 10.1109/tmag.2010.2093509

Google Scholar

[14] W. Min, J. T. Chen, Z. Q. Zhu, Y. Zhu, M. Zhang, and G. H. Duan, Optimization and comparison of novel E-core and C-core linear switched flux PM machines, IEEE Trans. Magn., Vol. 47, No. 8, pp.2134-2141, August (2011).

DOI: 10.1109/tmag.2011.2125977

Google Scholar

[15] C. F. Wang and J. X. Shen, A method to segregate detent force components in permanent-magnet flux-switching linear machines, IEEE Trans. Magn., Vol. 48, No. 5, pp.1948-1955, May (2012).

DOI: 10.1109/tmag.2011.2177852

Google Scholar

[16] C. C. Hwang , P. L. Li , and C. T. Liu, Design and analysis of a novel hybrid excited linear flux switching permanent magnet motor, IEEE Trans. Magn., Vol. 48, No. 11, pp.2969-2972, Nov. (2012).

DOI: 10.1109/tmag.2012.2195716

Google Scholar

[17] K. Kim, Design of the linear synchronous motor for general atomics urban MAGLEV system, in Proc. LDIA 2003, Birmingham, UK, 8-10 September 2003, pp. A5-A8.

Google Scholar

[18] W. R. Canders, P. Hoffmann, H. Mosebach and G. Tareilus, Large high performance linear drive with high overload capability and very small thrust ripple, in Proc. LDIA 2007, Lille, France, 16-19 September 2007, pp.1-4.

Google Scholar

[19] G. Jack, B. C. Mecrow, P. G. Dickinson, D. Stephenson, J. S. Burdess, N. Fawcett, and J. T. Evans, Permanent-magnet machines with powdered iron cores and prepressed windings, IEEE Trans. Ind. Appl., Vol. 36, No. 4, pp.1077-1084, July/August (2000).

DOI: 10.1109/28.855963

Google Scholar