The Study on Five Order Hypernormal Form of Icing Suspension Cable Model

Article Preview

Abstract:

Suspension cable structure is one of the most important structure. In this article the hypernormal form of icing suspension cable model with practical application background is investigated by using the method of New Grading Function and multi-lie bracket. First the average equations of icing suspension cable model is given, based on the equations, the method in reference [5]and maple program are used to obtain the five order hypernormal form of the icing suspension cable model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-239

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. C. Perkins, Modal interactions in the nonlinear response of elastic cables under parametric external excitation, J. Sci. International Journal of Non-Linear Mechanics. 27 (1992) 233-250.

DOI: 10.1016/0020-7462(92)90083-j

Google Scholar

[2] W. Zhang, Y. Tang, Global dynamics of the cable under combined parametrical and external excitations, J. Sci. International Journal of Non- Linear Mechanics. 37 (2002) 505-526.

DOI: 10.1016/s0020-7462(01)00026-9

Google Scholar

[3] A. Juozapaitis, S. Idnurm, G. Kaklauskas, J. Idnurm and V. Gribniak, Non-linear analysis of suspension bridges with flexible and rigid cables, J. Sci. Journal of Civil Engineering and Management. 16 (2010) 149-154.

DOI: 10.3846/jcem.2010.14

Google Scholar

[4] J. Li, X. L. Wei, The sufficient condition for the existence of periodic solution about iced cable with two degrees of freedom, J. Sci. The International Workshop on Physics and Mathematics. 2 (2011) 2745-2748.

DOI: 10.1109/icmt.2011.6002540

Google Scholar

[5] H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms, J. Sci. Journal of Differential Equations. 132 (1996) 293-318.

DOI: 10.1006/jdeq.1996.0181

Google Scholar

[6] D. Wang, J. Li, M.H. Huang and Y. Jiang, Unique normal form of Bogdanov-Takens singularities, J. Sci. Journal of Differential Equations. 163 (2000) 223-238.

DOI: 10.1006/jdeq.1999.3739

Google Scholar

[7] J. Li, D. Wang and W. Zhang, General forms of the simplest normal form of Bogdanov-Takens singularities, J. Sci. Dynamics of Continuous, Discrete and Impulsive Systems, Series A: mathematical Analysis. 8 (2001) 519-530.

Google Scholar

[8] J. P. Peng, D. Wang, A sufficient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities, J. Sci. International Journal of Bifurcation and Chaos. 14 (2004) 3337-3345.

DOI: 10.1142/s0218127404011247

Google Scholar

[9] E. Gamero, E. Freire and A. J. Rodriguez-Luis, Hypernormal form calculation for triple-zero degeneracies, J. Sci. Bulletin of the Belgian Mathematical Society-Simon Stevin. 6 (1999) 357-368.

DOI: 10.36045/bbms/1103065855

Google Scholar

[10] M. Gazor, P. Yu, The spectral sequences and parametric normal forms, J. Sci. Journal of Differential Equations. 252 (2011) 1003-1031.

DOI: 10.1016/j.jde.2011.09.043

Google Scholar