[1]
Li G C. Aero-optics, National Defense Industry Press, Beijing, 2006. (in Chinese).
Google Scholar
[2]
E. R. G. Eckert. Transpiration and film cooling, in: Heat-Transfer Symposium 1952. Ann Arbor Engineering-Research Institute, University of Michigan 1953: 195-210.
Google Scholar
[3]
Seban R A, Back L H. Velocity and temperature profiles in turbulent boundary layer with tangential injection. J. Heat Transfer, 84(1962): 45-54.
DOI: 10.1115/1.3684292
Google Scholar
[4]
Daanish Maqbool, Krian Dellimore, Christopher Cadou. Development of a supersonic film cooling test facility. AIAA Paper, 2010, 2010-6886.
DOI: 10.2514/6.2010-6886
Google Scholar
[5]
Aupoix B, Mignosi A, Viala S, et al. Experimental and numerical study of supersonic film cooling. AIAA J, 36(1998): 916-923.
DOI: 10.2514/3.13913
Google Scholar
[6]
Mark A, Roy J. Experimental investigation of slot injection into supersonic flow with an adverse pressure gradient. AIAA Paper, 93-2442: 1-9.
Google Scholar
[7]
Juhany K A, Hunt M L, Sivo J M. Influence of injectant Mach number and temperature on supersonic film cooling. J. Thermophysics and Heat Transfer, 8(1994): 59-67.
DOI: 10.2514/3.501
Google Scholar
[8]
Kanda T, Ono F, Saito T. Experimental Studies of Supersonic Film Cooling with Shock Wave Interaction. AIAA Paper, 1996, 96-2663.
DOI: 10.2514/6.1996-2663
Google Scholar
[9]
Meyer T R. Accuracy and resolution issues in NO/acetone PLIF measurements of gas-phase molecular mixing. Exp Fluids, 32(2002): 603-611.
DOI: 10.1007/s00348-001-0372-9
Google Scholar
[10]
Elliott G S, Glumac N, Carter C D. Molecular Rayleigh scattering applied to combustion and turbulence. AIAA Paper 99-0643, (1999).
DOI: 10.2514/6.1999-643
Google Scholar
[11]
ZHAO Y X, YI S H, TIAN L F, et al. Supersonic flow imaging via nanoparticles. Science in China Series E: Technological Sciences, 52(2009): 3640-3648.
DOI: 10.1007/s11431-009-0281-3
Google Scholar
[12]
Zhao Y X, Yi S H, Tian L F, et al. The experimental study of interaction between shock wave and turbulence. Chin Sci Bull, 52(2007): 1297-1301.
DOI: 10.1007/s11434-007-0177-1
Google Scholar
[13]
Zhao Y X, Yi S H, He L, et al. The experimental research of shocklet in supersonic turbulent mix layer . Journal of National University of Defense Technology, 29(2007): 12-15 (in Chinese).
Google Scholar
[14]
Zhao Y X, Yi S H, Tian L F, et al. The fractal measurement of experimental images of supersonic turbulent mixing layer. Sci China Ser G, 51(2008): 1134-1143.
DOI: 10.1007/s11433-008-0097-3
Google Scholar
[15]
Yi S H, He L, Zhao Y X, et al. A flow control study of a supersonic mixing layer via NPLS. Sci China Ser G, 52(2009): 2001-(2006).
DOI: 10.1007/s11433-009-0301-0
Google Scholar
[16]
He L, Yi S H, Zhao Y X, et al. Visualization of coherent structures in a supersonic flat-plate boundary layer. Chin Sci Bull, 56(2011): 489-494.
DOI: 10.1007/s11434-010-4312-z
Google Scholar
[17]
Yang W B, Zhuang F G, Shen Q, et al. Experimental and numerical study on instability structure of supersonic mixing layer(Mc=0. 5). Sci China Ser G, 52(2009): 1624-1631.
DOI: 10.1007/s11433-009-0189-8
Google Scholar
[18]
Clemens N T. Flow imaging [C]. In Encyclopedia of Imaging Science and Technology. John Wiley and Sons, New York, (2002).
Google Scholar
[19]
Chen Z, Yi S H, He L. An experimental study on fine structures of supersonic laminar/turbulent flow over a backward-facing step based on NPLS. Chin Sci Bull, 57(2012): 584-590.
DOI: 10.1007/s11434-011-4888-y
Google Scholar