[1]
B. Balasko, J. Abonyi, and B. Feil, Fuzzy clustering and data analysis toolbox, Department of Process Engineering, University of Veszprem, Hungary, (2005).
Google Scholar
[2]
J. C. Dunn, A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters, J. Cybern., 3 (1974) 32-57.
DOI: 10.1080/01969727308546046
Google Scholar
[3]
J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, (1981).
Google Scholar
[4]
D. Q. Zhang and S. C. Chen, Clustering incomplete data using kernel-based fuzzy c-means algorithm, Neural Process. Lett., 18 (2003) 155-162.
DOI: 10.1023/b:nepl.0000011135.19145.1b
Google Scholar
[5]
H. B. Shen, J. Yang, S. T. Wang, and X. J. Liu, Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets, Soft Comput., 10 (2006) 1061-1073.
DOI: 10.1007/s00500-005-0043-5
Google Scholar
[6]
C. Yu, Y. Li, A. Liu, and J. Liu, A novel modified kernel fuzzy c-means clustering algorithm on image segementation, in: The IEEE 14th International Conference on Computational Science and Engineering (CSE 2011), 621-626, Dalian, China (2011).
DOI: 10.1109/cse.2011.109
Google Scholar
[7]
W. Wang, Y. Zhang, Y. Li, and X. Zhang, The global fuzzy c-means clustering algorithm, in: The 6th World Congress on Intelligent Control and Automation (WCICA 2006), 3604-3607, Dalian, China (2006).
DOI: 10.1109/wcica.2006.1713041
Google Scholar
[8]
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.
Google Scholar
[9]
T. M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE T. Electr. Comput., 14 (1965) 326-334.
DOI: 10.1109/pgec.1965.264137
Google Scholar
[10]
S. Saitoh, Theory of reproducing kernels and its applications, Longman Scientific and Technical, Harlow, England, (1988).
Google Scholar
[11]
B. Scholkopf, A. Smola, and K. R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10 (1998) 1299-1319.
DOI: 10.1162/089976698300017467
Google Scholar
[12]
K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, An introduction to kernel-based learning algorithms, IEEE T. Neural Networ., 12 (2001) 181-201.
DOI: 10.1109/72.914517
Google Scholar
[13]
A. Likas, N. Vlassis, and J. J. Verbeek, The global k-means clustering algorithm, Pattern Recogn., 36 (2003) 451-461.
DOI: 10.1016/s0031-3203(02)00060-2
Google Scholar
[14]
D. J. Hermes, Vowel-onset detection, J. Acous. Soc. Am., 87 (1990) 866-873.
Google Scholar
[15]
S. R. M. Prasanna, S. V. Gangashetty, and B. Yegnanarayana, Significance of vowel onset point for speech analysis, in: Sixth Biennial Conference on Signal Processing and Communications, IISc-Bangalore, India (2001).
Google Scholar
[16]
X. Zang and K. T. Chong, Homomorphic filtered spectral peaks energy for automatic detection of vowel onset point in continuous speech, IEICE T. Inf. Syst., E96d (2013) 949-956.
DOI: 10.1587/transinf.e96.d.949
Google Scholar
[17]
J. W. Picone, Signal modeling techniques in speech recognition, P. IEEE, 81 (1993) 1215-1247.
DOI: 10.1109/5.237532
Google Scholar