Hybrid Projective Synchronization of a New Hyperchaotic System

Article Preview

Abstract:

The full state hybrid projective synchronization, which includes complete synchronization, anti-synchronization and projective synchronization as its special item, is a novel type of chaos synchronization, so the research in this area has high practical significance. This paper is involved with full state hybrid projective synchronization of a new hyperchaotic system. Based on the stability criterion of linear system, full state hybrid projective synchronization is achieved by appropriate linear separation. Numerical simulation is presented to demonstrate the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-67

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Pecora, T.L. Carroll: Phys Rev Lett, Vol. 64(1990), pp.821-830.

Google Scholar

[2] R. Mainieri, J. Rehacek: Phys Rev Lett, Vol. 82(1999)No. 15, pp.3042-3045.

Google Scholar

[3] G. Grassi: Journal of the Franklin Institute, Vol. 347 (2010) , pp.438-451.

Google Scholar

[4] F.H. Min, Z.Q. Wang: Acta Physica Sinica , Vol. 56(2007) No. 11, pp.6238-6243. (In Chinese).

Google Scholar

[5] M.F. Hu,Z.Y. Xu and R. Zhang: Communications in Nonlinear Science and Numerical Simulation, Vol. 13(2008)No. 2, pp.456-464.

Google Scholar

[6] S. Zheng G.G. Dong and Q.S. Bi: Applied Mathematics and Computation, Vol. 215(2010), pp.3192-3200.

Google Scholar

[7] G.H. Li: Chaos Solitons Fractals, Vol. 32(2007), pp.1454-1458.

Google Scholar

[8] J. Chen, J.A. Lu: Control Theory and Applications, Vol. 26(2009), No. 9, pp.949-952. (In Chinese).

Google Scholar

[9] M. Hu,Z. Xu and R. Zhang: Commun. Nonlinear Sci Numer. Simulat, Vol. 13(2008), pp.456-464.

Google Scholar

[10] W. Li, X. Chen: Commun Nonlinear Sci Numer Simulat, Vol. 14 (2009), pp.3100-3107.

Google Scholar

[11] G.H. Li: Chaos Solitio Fractal, Vol. 32(2007), p.1786.

Google Scholar

[12] N. Cai, Y. Jing and S. Zhang: Commun Nonlinear Sci Numer Simulat , Vol. 15(2010), pp.1613-1620.

Google Scholar

[13] G. Cai, Z. Tan,W. Zhou and W. Tu: Acta Physiea Sinica, Vol. 56 (2007), p.6230–6237.

Google Scholar

[14] S. Zheng G.G. Dong and Q.S. Bi: Journal of the Franklin Institute , Vol. 347 (2010) , p.438–451.

Google Scholar

[15] X.Y. Wang,Y. Wang.: Acta Physiea Sinica, Vol. 56(2007)No. 5, pp.2498-2503.

Google Scholar