[1]
Ko W L. Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating[R]. NASA/TP-2004-212041, (2004).
Google Scholar
[2]
Thornton E A, Kolenski J D, Marino R P. Finite element study of plate buckling induced by spatial temperature gradients[C]. AIAA/ ASME/ ASCE/ AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference. (1993), 1: 2313-2326.
DOI: 10.2514/6.1993-1572
Google Scholar
[3]
Javaheri R, Eslami M R, AIAA Journal, (2002), 40: 162-169.
Google Scholar
[4]
Gray C C, Mei C. Finite element analysis of thermal post-buckling and vibrations of thermally buckled composite plates[D]. Old Dominion University, (1991).
DOI: 10.2514/6.1991-1239
Google Scholar
[5]
Dhainaut, Jean-Michel, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment., Journal of aircraft, 40. 4 (2003): 683-691.
DOI: 10.2514/2.3146
Google Scholar
[6]
Mei C, Dhainaut J M, Duan B, et al. Nonlinear random response of composite panels in an elevated thermal environment[R]. OLD DOMINION UNIV NORFOLK VA, (2000).
Google Scholar
[7]
Przekop A, Rizzi S A, Sweitzer K A, International Journal of Fatigue, (2008), 30: 1579-1598.
Google Scholar
[8]
Przekop A, Rizzi S A, AIAA journal, (2007), 45(10): 2510-2519.
Google Scholar
[9]
Radu A, Yang B, Kim K, et al. Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading[C]/Proceedings of the 45th Structures, Structural Dynamics, and Materials Conference, (2004): 19-22.
DOI: 10.2514/6.2004-1557
Google Scholar
[10]
Shukla, Amit, Robert W. Gordon, and Joseph J. Hollkamp, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April (2008), <br>16t 7-10.
DOI: 10.2514/6.2008-2233
Google Scholar
[11]
Yundong Sha, Jiyong Li, and Zhijun Gao. Dynamic Response of Pre/Post Buckled Thin-Walled Structure under Thermo-Acoustic Loading., Applied Mechanics and Materials 80 (2011): 536-541.
DOI: 10.4028/www.scientific.net/amm.80-81.536
Google Scholar
[12]
Yundong Sha, Jing Wei, Zhijun Gao, et al, Journal of Vibration and Control, (2012).
Google Scholar
[13]
Yundong Sha, Zhijun Gao, Fei Xu, Applied Mechanics and Materials, (2012), 105: 220-226.
Google Scholar
[14]
Xinyun Guo, Adam Przekop and Chuh Mei, Structural Dynamics & Materials Conference, April (2004), 19-22.
Google Scholar
[15]
Guo X, Przekop A, Mei C, et al, Journal of aircraft, (2004), 41(6): 1498-1504.
Google Scholar
[16]
Yundong Sha, Fei Xu, Zhijun Gao, Applied Mechanics and Materials, (2012), 117: 876-881.
Google Scholar
[17]
Sunakawa M M, ESAS, Tokyo University, (1966), (402): 31.
Google Scholar
[18]
Carpinteri A, Spagnoli A, Vantadori S, Fatigue & Fracture of Engineering Materials & Structures, (2003), 26(6): 515-522.
Google Scholar
[19]
Dowling, N.E., Mean stress effects in stress-life and strain-life fatigue, Fatigue 2004: Second SAE Brasil Conference on Fatigue, SAE 2004-01-2227, São Paulo, Brasil, June, (2004).
DOI: 10.4271/2004-01-2227
Google Scholar
[20]
Sweitzer, K.A. and Ferguson, N.S. Mean stress effects on random fatigue of nonlinear structures, XII International Congress on Sound and Vibration, Lisbon, Portugal, July, (2005).
Google Scholar
[21]
Miner, M. A, Trans, ASME, Journal of Applied Mechanics, Vol. 67 (1945), pp. A159-A164.
Google Scholar
[22]
WAFO - A Matlab toolbox for analysis of random waves and loads, " Version 2. 1. 1, The WAFO Group, Lund Institute of Technology, Lund University, (2005).
Google Scholar