[1]
H. H. S. Chu, S. W. Churchill, C. V. S. Patterson, The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels, J. Heat Transfer 98 (1976) 194-201.
DOI: 10.1115/1.3450518
Google Scholar
[2]
B. L. Turner, R. D. Flack, The experimental measurement of natural convective heat transfer in rectangular enclosure with concentrated heat sources, J. Heat Transfer 102 (1980) 236-241.
DOI: 10.1115/1.3244266
Google Scholar
[3]
M. Keyhani, V. Prasad, R. Cox, An experimental study of natural convection in a vertical cavità with discrete heat sources, J. Heat Transfer 110 (1988) 616-624.
DOI: 10.1115/1.3250537
Google Scholar
[4]
M. L. Chadwick, B. W. Webb, H. S. Heaton, Natural convection from two-dimensional discrete heat siurces in a rectangular enclosure, Int. J. Heat Mass Transfer 34 (1991) 1679-1693.
DOI: 10.1016/0017-9310(91)90145-5
Google Scholar
[5]
G. Refai Ahmed, M. M. Yovanovich, Influence of discrete heat source location on natural convection heat transfer in a vertical square enclosure, J. Electronic Packaging 113 (1991) 268-274.
DOI: 10.1115/1.2905406
Google Scholar
[6]
G. Refai Ahmed, M. M. Yovanovich, Numerical study of natural convection from discrete heat sources in a vertical square enclosure, J. Thermophysics 6 (1992) 121-127.
DOI: 10.2514/3.326
Google Scholar
[7]
M. S. Polentini, S. Ramadhyani, F. P. Incropera, Single-phase thermosyphon cooling of an array of discrete heat sources in a rectangular cavità, Int. J. Heat Mass Transfer 36 (1993) 3983-3996.
DOI: 10.1016/0017-9310(93)90149-z
Google Scholar
[8]
C. J. Ho, J. Y. Chang, A study of natural convection heat transfer in a vertical rectangular enclosure with two-dimensional discrete heating: effect of aspect ratio, Int. J. Heat Mass Transfer 37 (1994) 917-925.
DOI: 10.1016/0017-9310(94)90217-8
Google Scholar
[9]
T. J. Heindel, S. Ramadhyani, F. P. Incropera, Laminar natural convection in a discretely heated cavity: I-assessment of three-dimensional effects, J. Heat Transfer 117 (1995) 902-909.
DOI: 10.1115/1.2836309
Google Scholar
[10]
T. J. Heindel, S. Ramadhyani, F. P. Incropera, Laminar natural convection in a discretely heated cavity: II-comparisons of experimental and theoretical results, J. Heat Transfer 117 (1995) 910-917.
DOI: 10.1115/1.2836310
Google Scholar
[11]
S. K. W. Tou, C. P. Tso, X. Zhang, 3-D numerical analysis of natural convective liquid cooling of a 3×3 heater array in rectangular enclosures, Int. J. Heat Mass Transfer 42 (1999) 3231-3244.
DOI: 10.1016/s0017-9310(98)00379-2
Google Scholar
[12]
Y. Liu, N. Phan-Tien, An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure, Num. Heat Transfer 37 (2000) 613-630.
DOI: 10.1080/104077800274118
Google Scholar
[13]
R. L. Frederick, F. Quiroz, On the transition from conduction to convection regime in a cubical enclosure with a partially heated wall, Int. J. Heat Mass Transfer 44 (2001) 1699-1709.
DOI: 10.1016/s0017-9310(00)00219-2
Google Scholar
[14]
S. K. W. Tou, X. F. Zhang, Three-dimensional numerical simulation of natural convection in an inclined liquid-filled enclosure with an array of discrete heaters, Int. J. Heat Mass Transfer 46 (2003) 127-138.
DOI: 10.1016/s0017-9310(02)00253-3
Google Scholar
[15]
L. B. Erbay, Z. Altaç, B. Sülüş, Entropy generation in a square enclosure with partial heating from a vertical lateral wall, Heat Mass Transfer 40 (2004) 909-918.
DOI: 10.1007/s00231-003-0497-x
Google Scholar
[16]
J. H. Bae, J. M. Hyun, Time-dependent buoyant convection in an enclosure with discrete heat sources, Int. J. Thermal Sciences 43 (2004) 3-11.
DOI: 10.1016/s1290-0729(03)00102-9
Google Scholar
[17]
C. P. Tso, L. F. Lin, S. K. W. Tou, X. Zhang, Flow pattern evolution in natural convection from an array of discrete heat sources in a rectangular cavity at various orientations, Int. J. Heat Mass Transfer 47 (2004) 4061-4073.
DOI: 10.1016/j.ijheatmasstransfer.2004.05.022
Google Scholar
[18]
A. K. da Silva, S. Lorente, A. Bejan, Optimal distribution of discrete heat sources on a wall with natural convection, Int. J. Heat Mass Transfer 47 (2004) 203-214.
DOI: 10.1016/j.ijheatmasstransfer.2003.07.007
Google Scholar
[19]
Y. L. He, W. W. Yang, W. Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Num. Heat Transfer 47 (2005) 917-934.
DOI: 10.1080/10407780590921917
Google Scholar
[20]
A. K. da Silva, S. Lorente, A. Bejan, Constructal multi-scale structures for maximal heat transfer density, Energy 31 (2006) 620-635.
DOI: 10.1016/j.energy.2005.04.011
Google Scholar
[21]
N. Nithyadevi, P. Kandaswamy, J. Lee, Natural convection in a rectangular cavity with partially active side walls, Int. J. Heat Mass Transfer 50 (2007) 4688-4697.
DOI: 10.1016/j.ijheatmasstransfer.2007.03.050
Google Scholar
[22]
A. Baïri, J. M. García de María, N. Laraqi, N. Alilat, Free convection generated in an enclosure by alternate heated bands. Experimental and numerical study adapted to electronics thermal control, Int. J. Heat Fluid Flow 29 (2008) 1337-1346.
DOI: 10.1016/j.ijheatfluidflow.2008.06.007
Google Scholar
[23]
M. Corcione, E. Habib, Buoyant heat transport in fluids across tilted square cavities discretely heated at one side, Int. J. Thermal Sciences 49 (2010) 797-808.
DOI: 10.1016/j.ijthermalsci.2009.11.012
Google Scholar
[24]
S. Kimura, A. Bejan, Natural convection in a differentially heated corner region, Phys. Fluids 28 (1985) 2980-2989.
DOI: 10.1063/1.865137
Google Scholar
[25]
O. Aydin, Transient natural convection in rectangular enclosures heated from one side and cooled from above, Int. Comm. Heat Mass Transfer 26 (1999) 135-144.
DOI: 10.1016/s0735-1933(98)00129-8
Google Scholar
[26]
Y. L. He, W. W. Yang, W. Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Num. Heat Transfer 47 (2005) 917-934.
DOI: 10.1080/10407780590921917
Google Scholar
[27]
J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.
DOI: 10.1080/10407798408546946
Google Scholar
[28]
S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.
DOI: 10.1016/0017-9310(72)90054-3
Google Scholar
[29]
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, (1980).
Google Scholar
[30]
B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.
DOI: 10.1016/0045-7825(79)90034-3
Google Scholar
[31]
G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.
DOI: 10.1002/fld.1650030305
Google Scholar
[32]
H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.
DOI: 10.1002/fld.1650110105
Google Scholar
[33]
M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.
DOI: 10.1002/fld.1650110206
Google Scholar
[34]
D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.
DOI: 10.1080/104077901752379620
Google Scholar
[35]
A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).
Google Scholar
[36]
F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).
Google Scholar