Buoyancy-Induced Convection in a Square Enclosure Discretely Heated at One Side and Cooled either at the Top or at the Bottom Using both Gases and Liquids as Working Fluids

Article Preview

Abstract:

Laminar natural convection heat and momentum transfer in fluid-filled, square enclosures partially heated at one side and cooled either at the top or at the bottom, is studied numerically. A computational code based on the SIMPLE-C algorithm is used to solve the system of the mass, momentum and energy transfer governing equations. Simulations are performed using the Rayleigh number based on the cavity width, the thermally-active fraction of the partially heated sidewall, and the Prandtl number of the working fluid, as independent variables. It is found that the top cooling is definitely more efficient than the bottom cooling. In both cooling configurations the average Nusselt number of the cavity increases as each controlling parameter is increased. On the basis of the results obtained, a set of dimensionless correlations is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1741-1750

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. H. S. Chu, S. W. Churchill, C. V. S. Patterson, The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels, J. Heat Transfer 98 (1976) 194-201.

DOI: 10.1115/1.3450518

Google Scholar

[2] B. L. Turner, R. D. Flack, The experimental measurement of natural convective heat transfer in rectangular enclosure with concentrated heat sources, J. Heat Transfer 102 (1980) 236-241.

DOI: 10.1115/1.3244266

Google Scholar

[3] M. Keyhani, V. Prasad, R. Cox, An experimental study of natural convection in a vertical cavità with discrete heat sources, J. Heat Transfer 110 (1988) 616-624.

DOI: 10.1115/1.3250537

Google Scholar

[4] M. L. Chadwick, B. W. Webb, H. S. Heaton, Natural convection from two-dimensional discrete heat siurces in a rectangular enclosure, Int. J. Heat Mass Transfer 34 (1991) 1679-1693.

DOI: 10.1016/0017-9310(91)90145-5

Google Scholar

[5] G. Refai Ahmed, M. M. Yovanovich, Influence of discrete heat source location on natural convection heat transfer in a vertical square enclosure, J. Electronic Packaging 113 (1991) 268-274.

DOI: 10.1115/1.2905406

Google Scholar

[6] G. Refai Ahmed, M. M. Yovanovich, Numerical study of natural convection from discrete heat sources in a vertical square enclosure, J. Thermophysics 6 (1992) 121-127.

DOI: 10.2514/3.326

Google Scholar

[7] M. S. Polentini, S. Ramadhyani, F. P. Incropera, Single-phase thermosyphon cooling of an array of discrete heat sources in a rectangular cavità, Int. J. Heat Mass Transfer 36 (1993) 3983-3996.

DOI: 10.1016/0017-9310(93)90149-z

Google Scholar

[8] C. J. Ho, J. Y. Chang, A study of natural convection heat transfer in a vertical rectangular enclosure with two-dimensional discrete heating: effect of aspect ratio, Int. J. Heat Mass Transfer 37 (1994) 917-925.

DOI: 10.1016/0017-9310(94)90217-8

Google Scholar

[9] T. J. Heindel, S. Ramadhyani, F. P. Incropera, Laminar natural convection in a discretely heated cavity: I-assessment of three-dimensional effects, J. Heat Transfer 117 (1995) 902-909.

DOI: 10.1115/1.2836309

Google Scholar

[10] T. J. Heindel, S. Ramadhyani, F. P. Incropera, Laminar natural convection in a discretely heated cavity: II-comparisons of experimental and theoretical results, J. Heat Transfer 117 (1995) 910-917.

DOI: 10.1115/1.2836310

Google Scholar

[11] S. K. W. Tou, C. P. Tso, X. Zhang, 3-D numerical analysis of natural convective liquid cooling of a 3×3 heater array in rectangular enclosures, Int. J. Heat Mass Transfer 42 (1999) 3231-3244.

DOI: 10.1016/s0017-9310(98)00379-2

Google Scholar

[12] Y. Liu, N. Phan-Tien, An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure, Num. Heat Transfer 37 (2000) 613-630.

DOI: 10.1080/104077800274118

Google Scholar

[13] R. L. Frederick, F. Quiroz, On the transition from conduction to convection regime in a cubical enclosure with a partially heated wall, Int. J. Heat Mass Transfer 44 (2001) 1699-1709.

DOI: 10.1016/s0017-9310(00)00219-2

Google Scholar

[14] S. K. W. Tou, X. F. Zhang, Three-dimensional numerical simulation of natural convection in an inclined liquid-filled enclosure with an array of discrete heaters, Int. J. Heat Mass Transfer 46 (2003) 127-138.

DOI: 10.1016/s0017-9310(02)00253-3

Google Scholar

[15] L. B. Erbay, Z. Altaç, B. Sülüş, Entropy generation in a square enclosure with partial heating from a vertical lateral wall, Heat Mass Transfer 40 (2004) 909-918.

DOI: 10.1007/s00231-003-0497-x

Google Scholar

[16] J. H. Bae, J. M. Hyun, Time-dependent buoyant convection in an enclosure with discrete heat sources, Int. J. Thermal Sciences 43 (2004) 3-11.

DOI: 10.1016/s1290-0729(03)00102-9

Google Scholar

[17] C. P. Tso, L. F. Lin, S. K. W. Tou, X. Zhang, Flow pattern evolution in natural convection from an array of discrete heat sources in a rectangular cavity at various orientations, Int. J. Heat Mass Transfer 47 (2004) 4061-4073.

DOI: 10.1016/j.ijheatmasstransfer.2004.05.022

Google Scholar

[18] A. K. da Silva, S. Lorente, A. Bejan, Optimal distribution of discrete heat sources on a wall with natural convection, Int. J. Heat Mass Transfer 47 (2004) 203-214.

DOI: 10.1016/j.ijheatmasstransfer.2003.07.007

Google Scholar

[19] Y. L. He, W. W. Yang, W. Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Num. Heat Transfer 47 (2005) 917-934.

DOI: 10.1080/10407780590921917

Google Scholar

[20] A. K. da Silva, S. Lorente, A. Bejan, Constructal multi-scale structures for maximal heat transfer density, Energy 31 (2006) 620-635.

DOI: 10.1016/j.energy.2005.04.011

Google Scholar

[21] N. Nithyadevi, P. Kandaswamy, J. Lee, Natural convection in a rectangular cavity with partially active side walls, Int. J. Heat Mass Transfer 50 (2007) 4688-4697.

DOI: 10.1016/j.ijheatmasstransfer.2007.03.050

Google Scholar

[22] A. Baïri, J. M. García de María, N. Laraqi, N. Alilat, Free convection generated in an enclosure by alternate heated bands. Experimental and numerical study adapted to electronics thermal control, Int. J. Heat Fluid Flow 29 (2008) 1337-1346.

DOI: 10.1016/j.ijheatfluidflow.2008.06.007

Google Scholar

[23] M. Corcione, E. Habib, Buoyant heat transport in fluids across tilted square cavities discretely heated at one side, Int. J. Thermal Sciences 49 (2010) 797-808.

DOI: 10.1016/j.ijthermalsci.2009.11.012

Google Scholar

[24] S. Kimura, A. Bejan, Natural convection in a differentially heated corner region, Phys. Fluids 28 (1985) 2980-2989.

DOI: 10.1063/1.865137

Google Scholar

[25] O. Aydin, Transient natural convection in rectangular enclosures heated from one side and cooled from above, Int. Comm. Heat Mass Transfer 26 (1999) 135-144.

DOI: 10.1016/s0735-1933(98)00129-8

Google Scholar

[26] Y. L. He, W. W. Yang, W. Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Num. Heat Transfer 47 (2005) 917-934.

DOI: 10.1080/10407780590921917

Google Scholar

[27] J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.

DOI: 10.1080/10407798408546946

Google Scholar

[28] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.

DOI: 10.1016/0017-9310(72)90054-3

Google Scholar

[29] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, (1980).

Google Scholar

[30] B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.

DOI: 10.1016/0045-7825(79)90034-3

Google Scholar

[31] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.

DOI: 10.1002/fld.1650030305

Google Scholar

[32] H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.

DOI: 10.1002/fld.1650110105

Google Scholar

[33] M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.

DOI: 10.1002/fld.1650110206

Google Scholar

[34] D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.

DOI: 10.1080/104077901752379620

Google Scholar

[35] A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).

Google Scholar

[36] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).

Google Scholar