[1]
D. L. BOOK. Rayleigh-Taylor Instability in Compressible Media. NRL Memorandum Report 5373. (1984).
Google Scholar
[2]
Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. R. Math. Soc. 14 (1883), p.170.
Google Scholar
[3]
Schmidt, W. Turbulence-From tea kettles to exploding stars. Nature Physics 2 (2006), p.505.
DOI: 10.1038/nphys370
Google Scholar
[4]
Taylor G. The Stability of Liquid Surface when Accelerated in a Direction Perpendicular to Their PlanesⅠ. Proceedings of Royal Society of London, Vol. A201 (1950), p.192.
Google Scholar
[5]
Gardner C, Glimm J, McBryan O, etc. The Dynamics of Bubble Growth for Rayleigh-Taylor Unstable Interfaces. Phys Fluids, Vol. 31 (1988), p.447.
DOI: 10.1063/1.866826
Google Scholar
[6]
Li X L. Study of Three-Dimensional Rayleigh-Taylor Instability in Compressible Fluids through Level SetMethod and Parallel Computation. Phys Fluids, Vol. A5(1993), p.8.
DOI: 10.1063/1.858816
Google Scholar
[7]
Andrews M J, Spalding D B. A Simple Experiment to Investigate Two-Dimensional Mixing by Rayleigh-Taylor Instability. Phys Fluids, Vol. A2(1990), p.922.
DOI: 10.1063/1.857652
Google Scholar
[8]
Glimm J, Grove J W, et al. A critical analysis of Rayleigh-Taylor Growth Rates. J Comput Phys, Vol. 169(2001), p.652.
Google Scholar
[9]
Shi J, Zhang Y T, Shu C W. Resolution of High Order WENO Schemes for Complicated Flow Structures. J Comput Phys, Vol. 186(2003), p.690.
DOI: 10.1016/s0021-9991(03)00094-9
Google Scholar
[10]
Shuhai Zhang, Shufen Jiang, Chi-Wang Shu, Development of Nonlinear Weighted Compact Schemes with Increasingly Higher Order Accuracy. J. Comput. Phys. Vol. 227 (2008), p.7294.
DOI: 10.1016/j.jcp.2008.04.012
Google Scholar
[11]
Cockburn B., Shu C. W. The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Mathematical Modelling and Numerical Analysis, Vol. 25(1988), p.337.
DOI: 10.2514/6.1988-3797
Google Scholar
[12]
Cockburn B, Shu C W. TVB Runge-Kutta Local Projecting Discontinuous Galerkin Finite Element Methods for Conservation LawsⅡ: General Framework. Math. Comp., Vol. 52 (1989), p.411.
DOI: 10.1090/s0025-5718-1989-0983311-4
Google Scholar
[13]
Cockburn B, Lin S-Y, Shu C W. TVB Runge-Kutta Local Projecting Discontinuous Galerkin Finite Element Methods for Conservation Laws—Ⅲ: One Dimensional Systems. J. Comput. Phys., Vol. 84(1989), p.90.
DOI: 10.1016/0021-9991(89)90183-6
Google Scholar
[14]
Cockburn B, Hou S, Shu Chiwang. TVB Runge-Kutta Local Projecting Discontinuous Galerkin Finite Element Methods for Conservation Laws Ⅳ: the Multidimensional Case. J. Comput. Math. Comp., Vol. 54(1990), p.541.
DOI: 10.1090/s0025-5718-1990-1010597-0
Google Scholar
[15]
Cockburn B, Shu Chiwang. TVB Runge-Kutta Local Projecting Discontinuous Galerkin Finite Element Methods for Conservation LawsⅤ: Multidimensional Systems. J. Comput. Phys., Vol. 141(1998), p.199.
DOI: 10.2307/2008474
Google Scholar
[16]
Bassi F, Rebay S. A High-order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. J. Comput. Phys., Vol. 131 (1997), p.267.
DOI: 10.1006/jcph.1996.5572
Google Scholar
[17]
CHEN Er-Yun, LE Gui-Gao, MA Da-Wei, etc. Numerical Simulation for Rayleigh-Taylor Instability Using Runge-Kutta Discontinuous Finite Element Method. Chinese J. High Pressure Phys., Vol. 22, (2008), p.269.
Google Scholar